I really need help with this exercise (it's from a course in basic fourier analysis). It consists of two parts:(adsbygoogle = window.adsbygoogle || []).push({});

(i) Let [Tex] s_0 = 1/2 [/Tex] and [Tex] s_n = 1/2 + \sum_{j=1}^{n}\cos(jx) [/Tex] for [Tex] n \geq 1 [/Tex]. By writing [Tex] s_n = \left(\sum_{j=-n}^{n}e^{ijx}\right)/2 [/Tex] and summing geometric series show that [Tex] (n+1)^{-1}\sum_{j=0}^{n}s_j \rightarrow 0 [/Tex] as [Tex] n \rightarrow \infty [/Tex] for all [Tex] x \neq 0~mod~2\pi [/Tex], and so

[Tex] 0 = 1/2 + \sum_{j=1}^{\infty}\cos(jx) [/Tex] in the Cesáro sense.

(ii) Show similarly that, if [Tex] x \neq 0~mod~2\pi [/Tex], then

[Tex] cot(x/2) = 2\sum_{j=1}^{\infty}\sin(jx) [/Tex] in the Cesáro sense.

In (i) I have tried to write out two geometric series and summing them, but I can't get the desired result. I have no idea on (ii).

"in the Cesáro sense" means (i think) that the average of a given sequence [Tex] s_0,s_1,s_2,\ldots [/Tex] converges against a given limit L (the sequence itself doesn't nescessarily) - that is, the sequence [Tex] s_0, (s_0 + s_1)/2, (s_0 + s_1 + s_2)/3,\ldots \rightarrow L [/Tex].

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Exercise from basic Fourier Analysis

**Physics Forums | Science Articles, Homework Help, Discussion**