Thanks DH you obviously know what you are talking about. And sorry for not scaling it as you mentioned, I didn't do it because I only wanted to know why it was negative and why it was positive at times.
However I hope you can give me some more of your time, cause there is one thing that is still unclear:
Regarding the last paragraph of yours, I have had the same thought as you. But let's for argument sake look at the first moment E[(x-u)], with this moment you can use the same arguments as you use. If the distribution is skewed to the right x-u will tend to be bigger than |x-u| to the left. But the moment is still zero, because the p(x)-values to the left will tend to be bigger, so this will make the moment zero.
My question is: how do you disregard this when looking at the third moment, cause even though |x-u| will tend to be bigger at the skewed side. p(x) will tend to be bigger at the non-skewed side. So why does the effect of |x-u|^3 beat the p(x) "effect"? That is, if we have right skew, why does
(x-u)^3*p(x)dx tend to be more positive on the right, than (x-u)^3*p(x)dx is negative on the left side. Because p(x) will be bigger on the left, ex: chi-squared distributions.