- #1
chwala
Gold Member
- 2,708
- 375
- Homework Statement
- Find the equation of the normal to a curve given parametric equations;
##x=t^3, y=t^2##
- Relevant Equations
- Parametric equations
This is a text book example- i noted that we may have a different way of doing it hence my post.
Alternative approach (using implicit differentiation);
##\dfrac{x}{y}=t##
on substituting on ##y=t^2##
we get,
##y^3-x^2=0##
##3y^2\dfrac{dy}{dx}-2x=0##
##\dfrac{dy}{dx}=\dfrac{2x}{3y^2}##
at points ##(-8,4)##
##\dfrac{dy}{dx}=\dfrac{-1}{3}##
...the rest of the steps to required solution will follow...
...any insight is welcome.
Alternative approach (using implicit differentiation);
##\dfrac{x}{y}=t##
on substituting on ##y=t^2##
we get,
##y^3-x^2=0##
##3y^2\dfrac{dy}{dx}-2x=0##
##\dfrac{dy}{dx}=\dfrac{2x}{3y^2}##
at points ##(-8,4)##
##\dfrac{dy}{dx}=\dfrac{-1}{3}##
...the rest of the steps to required solution will follow...
...any insight is welcome.
Last edited: