Here's what I'm watching:(adsbygoogle = window.adsbygoogle || []).push({});

At about 1:35:00 he leaves it to us to look at a parallel transport issue. Explicitly to caclculate

##D_s D_r T_m - D_r D_s T_m##

And on the last term I'm having some difficulties, the second christoffel symbol.

So we have

##D_s [ \partial_r T_m - \Gamma_{rm}^t T_t]## after taking the first derivative. The first part of the second derivative is easy, but the second, I think I may have figured it out, but I'm not 100%, and would like someone to look at this to see if I'm doing this correctly, and if not, to correct me.

Second derivative:

##\partial_s [\partial_r T_m - \Gamma_{rm}^t T_t ] - \Gamma_{sm}^q [\partial_r T_q - \Gamma_{rq}^t T_t]##

My question is the running index (I think that's what it's called) on the second term, and how to replace the indices on, particularly, the very last christoffel symbol. I believe I need a different running index on the second derivative than I do for the first, so hence the q on ##\Gamma_{sm}^q## . However, my concern is in my ability to change the christoffel symbol ##\Gamma_{rm}^t## in the first derivative to ##\Gamma_{rq}^t## in the second. Part of me wants to do this:

##\Gamma_{sm}^q [\partial_r T_m - \Gamma_{rm}^t T_t]_q## **Edit** I realized after looking that I messed up with the m's here. Too many m's in the lower indices.

But I'm not sure if that's applicable. Also not sure what that would mean. I don't like changing anything within the [...] brackets, but I'm not sure how to introduce a new running index, as I'm relatively positive my result should be of the form ##S_{srm}## with S some tensor. Perhaps I should use T, but it's a different tensor of different rank, so I used S.

Hellp, someone learn me some knowledge.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Exploring Curvature

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**