Exploring Laurent Expansions with Constraints

  • Thread starter mathfied
  • Start date
  • Tags
    Constraints
  • #1
16
0
i get the idea of the laurent expansion but i get confused with the constraints and how they change the way you work with the expansion.
by now you can prob. tell I am trying to get to grasp with complex analysis as a whole.

for example i have this :

find laurent series for :[itex]\[
f(z) = \frac{z}
{{z^2 - 1}}
\][/itex]

given the constraints:
(a) [itex]\[
0 < \left| {z - 1} \right| < 2
\][/itex] ... (b) [itex]\[
\left| {z + 1} \right| > 2
\][/itex] ... (c)[itex]\[
\left| z \right| > 1
\][/itex]

------------------------------------------------------------
My Attempt: for part (a)

first I break up the function using partial fractions:
[itex]\[
\frac{z}
{{z^2 - 1}} = \frac{z}
{{(z - 1)(z + 1)}} = \frac{A}
{{(z - 1)}} + \frac{B}
{{(z + 1)}}
\][/itex]

[itex]\[
z = A(z + 1) + B(z - 1)
\][/itex]

setting: z=1:
[itex]\[
1 = 2A,A = \frac{1}
{2}
\][/itex]

setting: z=-1:
[itex]\[
- 1 = B( - 2),B = \frac{1}
{2}
\]
[/itex]

[itex]\[
so:\frac{z}
{{z^2 - 1}} = \frac{1}
{{2(z - 1)}} + \frac{1}
{{2(z + 1)}}
\]
[/itex]



so for: 0 < |z-1| < 2:
[itex]\[
\begin{gathered}
\frac{1}
{{2(z - 1)}} + \frac{1}
{{2(z + 1)}} \hfill \\
= \frac{1}
{{2(z - 1)}} + \frac{1}
{2}\left[ {\frac{1}
{{2 - ( - (z - 1)}}} \right] \hfill \\
= \frac{1}
{{2(z - 1)}} + \frac{1}
{2}\frac{1}
{2}\left[ {\frac{1}
{{1 - \left[ { - (\frac{{z - 1}}
{2})} \right]}}} \right] \hfill \\
= \frac{1}
{{2(z - 1)}} + \frac{1}
{4}\left[ {\frac{1}
{{1 - \left[ { - (\frac{{z - 1}}
{2})} \right]}}} \right] \hfill \\
= \frac{1}
{{2(z - 1)}} + \frac{1}
{4}\sum\limits_{n = 0}^\infty {\left[ {( - 1)^n \frac{{(z - 1)^n }}
{{2^n }}} \right]} \hfill \\
\frac{1}
{{2(z - 1)}} + \sum\limits_{n = 0}^\infty {\left[ {( - 1)^n \frac{{(z - 1)^n }}
{{2^{n + 2} }}} \right]} \hfill \\
\end{gathered}
\]
[/itex]

is this correct? I'm predicting that i may have missed out two parts:
1) the first part of the final equation : 1/2(z-1) : can this be simplified and integrated into the sum formula?

2) the constraint for part (a) was 0 < |z-1| < 2. I didn't know how to interpret |z-1| being between 0 and 2.



-------------------------------------------------------------------------------

for the other two parts - the constraints are (part (b) |z+1|>2 , part (c) |z|>1) - please could you advise me on how the constraints are meant to be used and how the final answer changes? is there a trick to this?
 

Answers and Replies

  • #2
For part (b), the Laurent series for your function is:\[f(z) = \frac{z}{{z^2 - 1}} = \frac{A}{(z+1)} + \frac{B}{(z-1)} = \frac{1}{2(z+1)} + \frac{1}{2(z-1)}\]where A and B are constants. This can be written as:\[f(z) = \frac{1}{2(z+1)} + \frac{1}{2}\left[{\frac{1}{2-(-(z-1))}}\right] = \frac{1}{2(z+1)} + \frac{1}{2}\frac{1}{2}\left[{\frac{1}{1-(-(\frac{z-1}{2}))}}\right] \]and then simplified to give:\[f(z) = \frac{1}{2(z+1)} + \sum_{n=0}^{\infty}\left[{(-1)^n\frac{(z-1)^n}{2^{n+2}}}\right]\]For part (c), you can simply substitute |z| > 1 into the above equation, giving:\[f(z) = \frac{1}{2(z+1)} + \sum_{n=0}^{\infty}\left[{(-1)^n\frac{|z|^n}{2^{n+2}}}\right]\]
 

Suggested for: Exploring Laurent Expansions with Constraints

Replies
12
Views
969
Replies
12
Views
823
Replies
9
Views
509
Replies
5
Views
1K
Replies
7
Views
777
Replies
6
Views
205
Replies
10
Views
867
Replies
2
Views
436
Replies
7
Views
651
Back
Top