1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Exponential equation

  1. Sep 24, 2013 #1
    [1] Total no. of real solution of the equation ##e^x = x^2##

    [2] Total no. of real solution of the equation ##e^x = x^3##

    My Solution:: [1] Let ##f(x) = e^x## and ##g(x) = x^2##

    Now we have use Camparasion Test for derivative

    So ##f^{'}(x) = e^x## which is ##>0\forall x\in \mathbb{R}## and ##g^{'}(x) = 2x##

    So When ##x<0##. Then ##f(x)## is Increasing function and ##g(x)## is Decreasing function

    So exactly one solution for ##x\leq 0##

    Now for ##x\geq 1##. Then ##f(x)## is Increasing faster then ##g(x)## . So here curve does not Intersect

    Now we will check for ##0<x<1##

    I Did not understand have can i check here which one is Increasing faster

    so please help me

    Thanks
     
  2. jcsd
  3. Sep 24, 2013 #2

    jbunniii

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Hint: What are the minimum and maximum values of ##f## and ##g## in the interval ##[0,1]##? Where do those values occur?
     
  4. Sep 25, 2013 #3
    Thanks jbunniii Got it

    Here we have to calculate which curve is above and which is below in the Interval ##\left (0,1 \right)##

    Given ##e^x = x^2 \Rightarrow e^x - x^2 = \underbrace{\left(e^x - 1\right)}_{ > 0}+\underbrace{\left(1 - x^2\right)}_{ > 0} > 0\; \forall x\in \left(0,1\right)##

    So ##e^x - x^2 >0\Rightarrow e^x > x^2 ## in ##x \in \left(0,1\right)##

    So first equation has only Real Roots
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Exponential equation
  1. Exponential Equation (Replies: 5)

  2. Exponential equation (Replies: 2)

Loading...