 #1
 178
 13
Homework Statement:

Find the exponential Fourier transform of
##f(x)=e^{x}## and write the inverse transform. You should find:
$$\int_{0}^{\infty} \frac{\cos{ax}}{a^2+1} da = \frac {\pi}{2} e^{x}$$
Relevant Equations:

Fourier transform:
$$g(a)=\frac{1}{2\pi} \int_{\infty}^{\infty} f(x) e^{iax} dx$$
Inverse Transform:
$$f(x)=\int_{\infty}^{\infty} g(a) e^{iax} da$$
From the sketch, I know that this function is an even function. So, I simplify the Fourier transform in the limit of the integration (but still in exponential form). Then, I try to find the exponential FOurier transform. Here what I get:
$$g(a)=\frac{2}{2\pi} \int_{0}^{\infty} e^{x} e^{iax} dx$$,
$$g(a)=\frac{1}{\pi} \int_{0}^{\infty} e^{(x)(1+a)} dx$$,
$$g(a)=\frac{1}{\pi} \left[\frac{e^{ix(1+a)}}{i(1+a)} \right]^{\infty}_{0}$$.
As x approaching infinite ##e^{ix(1+a)}## approaching zero. So,
$$g(a)=\frac{1ia}{\pi(1+a^2)}$$.
Knowing this transform, I did the inverse transformation.
$$f(x)=\int_{\infty}^{\infty} \frac{1ia}{\pi(1+a^2)} e^{iax} da$$, where ##e^{iax}=\cos {(ax)} + i \sin {(ax)}##
So,
$$f(x)=\int_{\infty}^{\infty} \frac{(1ia)\left(\cos{ax} + i \sin {ax}\right)}{\pi(1+a^2)} da$$.
I observe that ##\frac{\sin{ax}}{1+a^2}##; ##\frac{(a)\cos{ax}}{1+a^2}## are odd functions. But, ##\frac{\cos{ax}}{1+a^2}##; ##\frac{(a)\sin{ax}}{1+a^2}## are even functions. So,
$$f(x)=\frac{2}{\pi}\int_{0}^{\infty} \frac{\cos {ax} + a \sin {ax}}{(1+a^2)} da$$.
The sin term of the answer shouldn't be there. I have doublechecked my work and still haven't find the mistake. Could you please explain how I get the answer term, in the problem statement? Thanks.
$$g(a)=\frac{2}{2\pi} \int_{0}^{\infty} e^{x} e^{iax} dx$$,
$$g(a)=\frac{1}{\pi} \int_{0}^{\infty} e^{(x)(1+a)} dx$$,
$$g(a)=\frac{1}{\pi} \left[\frac{e^{ix(1+a)}}{i(1+a)} \right]^{\infty}_{0}$$.
As x approaching infinite ##e^{ix(1+a)}## approaching zero. So,
$$g(a)=\frac{1ia}{\pi(1+a^2)}$$.
Knowing this transform, I did the inverse transformation.
$$f(x)=\int_{\infty}^{\infty} \frac{1ia}{\pi(1+a^2)} e^{iax} da$$, where ##e^{iax}=\cos {(ax)} + i \sin {(ax)}##
So,
$$f(x)=\int_{\infty}^{\infty} \frac{(1ia)\left(\cos{ax} + i \sin {ax}\right)}{\pi(1+a^2)} da$$.
I observe that ##\frac{\sin{ax}}{1+a^2}##; ##\frac{(a)\cos{ax}}{1+a^2}## are odd functions. But, ##\frac{\cos{ax}}{1+a^2}##; ##\frac{(a)\sin{ax}}{1+a^2}## are even functions. So,
$$f(x)=\frac{2}{\pi}\int_{0}^{\infty} \frac{\cos {ax} + a \sin {ax}}{(1+a^2)} da$$.
The sin term of the answer shouldn't be there. I have doublechecked my work and still haven't find the mistake. Could you please explain how I get the answer term, in the problem statement? Thanks.