Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Extra dimensional mass trick

  1. Nov 28, 2006 #1

    arivero

    User Avatar
    Gold Member

    The Higgs mechanism allows to give masses to massless particles. In extra dimensions there is another mechanism

    Any hint about earlier uses of this idea?
     
    Last edited: Nov 28, 2006
  2. jcsd
  3. Nov 28, 2006 #2

    selfAdjoint

    User Avatar
    Staff Emeritus
    Gold Member
    Dearly Missed

    I believe Lisa Randall uses this in he "Warped Passages" extra dimensional theory. She expects to see massive new particles at LHC that will be projections or "shadows" of particles moving in the higher dimensional bulk, and states that their massis will be projections of their higher simensional motion. The bulk in her theory has AdS geometry which may factor in too.
     
  4. Nov 28, 2006 #3

    arivero

    User Avatar
    Gold Member

    Hmm, should such particles run at lightspeed in the full manifold, but to appear slower in the 3+1 dimensional one?

    If so, what about helicity?
     
  5. Nov 28, 2006 #4

    garrett

    User Avatar
    Gold Member

    It's a reasonable approach. I'm not sure where it first arose, but it seems very natural once you have Kaluza-Klein theory and the Dirac equation on the scene. The two main problems with it I know of are: the masses tend to be too big when the internal space is small, and you get an infinite spectrum (often called the Kaluza-Klein tower) of masses corresponding to the harmonics of the internal space. Also, a curious fact about the Dirac operator: it has no zero eigenvalues for a compact space.

    Along with a third problem -- the difficulty of producing chiral symmetry breaking -- these facts lead to the demise of Kaluza-Klein in the 80's.
     
  6. Nov 28, 2006 #5
    Do these criticisms apply to string theory? I was of the understanding that string theory is a Kaluza-Klein theory
     
  7. Nov 28, 2006 #6

    selfAdjoint

    User Avatar
    Staff Emeritus
    Gold Member
    Dearly Missed


    Dunno. Read the book. Randall (and let's not forget her colleague, Sundrum) has the questions all worked out so I assume she has that one answered too. But I haven't read, or retained at a deep enough level to give you the answer.
     
  8. Nov 29, 2006 #7

    arivero

    User Avatar
    Gold Member

    I guess Randall-Sundrum do not have problems about the mass being to big if they expect extra dimensions at a TeV. But the issue of the tower of masses sound unphysical to me. Sure, there are harmonic in the compact dimensions, but in what way are we expected to observe them? At low energy? Because beyond the compactification scale, the compactification picture does not apply.
     
  9. Nov 29, 2006 #8

    arivero

    User Avatar
    Gold Member

    On second view the argument seems a bit falacious. Suppose we have an operator
    [tex]A \equiv A_1 \otimes 1 + 1 \otimes A_2[/tex] acting on a Hilbert space [tex]H_1 \otimes H_2[/tex]. Ok, I agree that if [tex]|v_1>[/tex] is an eigenvector of [tex]A_1[/tex] and [tex]|v_2>[/tex] is an eigenvector of [tex]A_2[/tex], then [tex]|v_1> \otimes |v_2>[/tex] is an eigenvector of [tex]A[/tex]. But does it work in the inverse direction? Can any eigenvector of A to be decomposed in this way?

    Moreover, when building the higher dimensional Dirac operator I believe to remember that one does a small twist on gamma5, ie one builds
    [tex]\kern+0.25em /\kern-0.80em D^{(4)} \otimes 1 + (\gamma^1\gamma^2\gamma^3\gamma^4) \otimes \kern+0.25em /\kern-0.80em D^{(int)}[/tex]
     
    Last edited: Nov 29, 2006
  10. Nov 29, 2006 #9

    CarlB

    User Avatar
    Science Advisor
    Homework Helper

    I think that the basic problem here is that you are bringing in an unnecessary formalism. All that is needed to give the mass interaction is the usual physical assumption that one can write the wave function as a sum over products of eigenfunctions.

    Before I got into Euclidean relativity and Clifford algebra, I messed around with this. The way it's done is strictly as a differential equation solution. By which I mean that the mass shows up in a completely classical manner.
     
  11. Nov 29, 2006 #10
    Paul Wesson elaborates on this in his 2006 "Five-Dimensional Physics"
    -- Classical and Quantum Consequences of Kaluza-Klein Cosmology Wesson 2006

    Wesson (p77, section 3.4)
    Nigel
     
  12. Nov 30, 2006 #11

    arivero

    User Avatar
    Gold Member

    I will look for the book.

    Indeed in momentum space it is trivial to see it: we have on one hand
    [tex]E^2 - \sum_{i=1}^3 p_i^2 =m^2[/tex]
    and on the whole
    [tex]E^2 - \sum_{i=1}^{3+n} p_i^2 =0[/tex]
    Thus we can set the (square of the) momentum in the internal coordinates equal to the (sq) mass we see in the external 3+1 world.

    [tex]m^2=\sum_{i=4}^{3+n} p_i^2[/tex]

    The puzzling thing is that we haven't got full working Lorentz transformations anymore: if we want the mass to be a constant, as we know it happens in our world (it is the rest mass), then we need to ask separately for a invariance in the extra [tex]p_i[/tex] coordinates. We can not mix uncompactified and compactified momentum, and this excludes mixing with the time coordinate (uncompactified it is).
     
    Last edited: Nov 30, 2006
  13. Nov 30, 2006 #12

    arivero

    User Avatar
    Gold Member

    Yeah, the problem is that I did not brough up the necessary formalism. really I have built a orthogonal basis and, seen this, then the result (for the straigh tensor product) follows trivially. You are perhaps right that to cope with infinite dimensional spaces is perhaps better to keep with the differential equation setup.

    On the other hand, the point about the use of a "twisting" via chirality is better seen in the tensor decomposition.
     
  14. Nov 30, 2006 #13

    CarlB

    User Avatar
    Science Advisor
    Homework Helper

    Yes. From my point of view, this implies a preferred rest frame. The natural conclusion is that the invariance you're seeing in the non compact dimensions must be an accidental symmetry only. You can put the whole thing on a foundation that is fully consistent and simple, if you follow through with this. To get it to work, you really do have to chase through the foundations and modify everything. You'll end up deriving invariance as an approximation. It took me about a year to work it out from one end to the other, but I'm a slow old guy.

    And by the way, momentum space is the way to do the problem.
     
    Last edited: Nov 30, 2006
  15. Nov 30, 2006 #14

    CarlB

    User Avatar
    Science Advisor
    Homework Helper

    Does Wessen reference Almeida? For example:
    http://www.arxiv.org/abs/physics/0410035

    There is so much stuff done along this line (especially in "Euclidean Relativity") that amounts to reinvention of the wheel. I noticed that Almeida doesn't refer to Wessen in the above.
     
  16. Dec 1, 2006 #15

    arivero

    User Avatar
    Gold Member

    It seems that the "Klein-" past in Klein-Gordon equation is derived exactly (year 1926) in this way, as a wave equation without mass but in five dimensions. So the only new thing is to do it with the Dirac equation -obviously unavailable in 1926-, or with Rarita-Schwinger (??).

    Colateral thought: usually it is said that the compactification scale gives us, or is equal to, the Planck mass, thus Newton Constant. But if you think that Newton Constant is a more fundamental element, then it can be said that the compatification scale gives you... the Planck constant! This is argued also by Klein in his 1926 paper, related to the ideas of De Broglie where the Planck constant is usually related to a kind of internal vibration of the particles.
     
  17. Dec 1, 2006 #16
    In:http://www.arxiv.org/abs/physics/0601194, "Can physics laws be derived from monogenic functions?", Almeida quotes Wesson http://www.arxiv.org/abs/gr-qc/0507107:

    [3] P. S. Wesson, In defense of Campbell’s 2005, gr-qc/0507107.

    Looks like Prof. Wesson has been working on this a while. I think he and his colleagues were responsible for that approach to the nature of matter that involves extending "spacetime" (ST) to "spacetimematter" (STM).

    Nigel
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Extra dimensional mass trick
  1. Extra dimensions (Replies: 5)

  2. Extra Dimensions (Replies: 4)

  3. Extra Dimensions (Replies: 13)

  4. Extra dimension (Replies: 16)

Loading...