• Support PF! Buy your school textbooks, materials and every day products via PF Here!

Extremizing functionals (Calculus of variations)

  • Thread starter phymatast
  • Start date
1. Homework Statement

Find the curve y(x) that extremizes the functional J[y]= int({1-y'^2}/y,x=a..b) if the end points lie on two non-intersecting circles in the upper half-plane.

2. Homework Equations

Euler's equation: if F=F(x,y,y') then Euler's equation extremization is found from solving the ODE: F_y - d/dx(F_y') = 0 (where F_y denotes the derivative of F wrt y).

Since F is independant from x the problem reduces to solving y'*F_y' -F= c

3. The Attempt at a Solution

I used the Euler's equation to solve the given functional.

At some point I get: y'^2 = c*y -1
so if i want to solve for y' I will have to choose wether to give it + or - sign (first confusion).

Suppose the first problem is trivial. I got the extremum to be a parabola with 2 constants.


Now my main problem is to use the boundary conditions to determine the curve y(x).
So y(a) will be varying on the first circle and y(b) on the second.
I tried to read in my text (Gelfand and Fomin) but I couldn't just solve it.

Any help :)?

Thanks,
Joe
 

Want to reply to this thread?

"Extremizing functionals (Calculus of variations)" You must log in or register to reply here.

Related Threads for: Extremizing functionals (Calculus of variations)

  • Posted
Replies
0
Views
967
  • Posted
Replies
8
Views
1K
  • Posted
Replies
1
Views
2K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top