# Homework Help: Factorial Notation

1. Apr 2, 2006

### funktion

Hey, I was wondering if someone could help me with a specific type of question that I can't seem to understand without an answer key. Anyway, it's rewriting expressions with factorial notation so that they no longer have factorial symbols.

Example:

Simplify without using the factorial symbol:
(n-2)!(n+1)!/(n!)²

What I don't understand is how you come to that conclusion. Can someone explain this to me?

2. Apr 2, 2006

### mantito

well, the key to solution is to notice that n!=(n-2)!*(n-1)*n and (n+1)!=n!*(n+1). also (n!)^2=n!*n!.

3. Apr 2, 2006

### dav2008

What is n! ?

It's n*(n-1)*(n-2)*(n-3)*...*1

What is (n-2)! and (n+1)! ?

If you write all of those out, you'll notice that certain terms cancel.

Edit: Or I guess a more direct approach would be to write n! in terms of (n-2)! like mantito has done.

4. Apr 2, 2006

### funktion

Yeah, I understand what you're saying, but I'm still stuck.

I guess I'll show you my work.

(n-2)!(n+1)!/(n!)²

= (n-2)(n-1)n!(n+1)!/n(n-1)(n-2)!(n!)

= (n+1)!/n!

What I have trouble with is I guess why the answer is (n+1)/n(n-1). Can I not just cancel out the factorial symbol without having to multiply (n-1)?

5. Apr 2, 2006

### nrqed

I don`t understand your numerator..did you use (n-2)!=(n-2)(n-1) n! ??
That is incorrect!

You just have to write the (n+1)! as (n+1) n! and then write one of the n! of the denominator as n (n-1) (n-2)! and then all the factorials will cancel out leaving you with (n+1) / (n (n-1))

Patrick

6. Apr 2, 2006

### funktion

Thanks a bunch, but one more question: Why was mine incorrect?

7. Apr 2, 2006

### lypaza

Because n! = (n-2)! (n-1) n

8. Apr 3, 2006

### VietDao29

The numerator in your second step is wrong!
$$(n - 2)! \neq (n - 2) (n - 1) n!$$