Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Faster than light illusion

  1. Feb 17, 2009 #1
    Hello, im really curious about special relativity but dont have a strong background in maths or theoretical physics. would be very greatful if you could help me with this scenario;

    XYZ are objects in space

    Y explodes violently, sending X and Z away from Y in opposite directions at C / 2 + 1 m/s

    is this scenario possible within the realms of SR? if yes, would light emitted from X ever reach Z?
     
  2. jcsd
  3. Feb 17, 2009 #2

    mgb_phys

    User Avatar
    Science Advisor
    Homework Helper

    If you mean X-Z are moving in opposite directions then yes they can move apart faster than light and will not be able to communicate with each other again - ie light from X can't catch-up with Z. (assuming a flat or expanding universe)

    If you mean X,Y,Z in the normal grid coordinates sense, so X is going right and Z is going up, then the distance between them increases as sqrt(2) = 1.4 * the distance along the x (or Z) axis and so the ligth could reach from one to the other.

    You don't need an explosion in spcae to do this, the electrons in your TV are going at 99% the speed of light and so if you put 2 TVs back-back the electrons are moving apart at almost 2c
     
  4. Feb 17, 2009 #3

    Dale

    Staff: Mentor

    I'm sure you didn't mean that. They can communicate just fine.
     
    Last edited: Feb 17, 2009
  5. Feb 17, 2009 #4

    mgb_phys

    User Avatar
    Science Advisor
    Homework Helper

    I assume he meant X,Z had a speed of c/2 + 1 relative to the origin not each other.
     
  6. Feb 18, 2009 #5

    marcus

    User Avatar
    Science Advisor
    Gold Member
    Dearly Missed

    Slight correction. No reason they can't communicate. Even moving in opposite directions, given enough time, light from X can catch up with Z.

    With Lexus' assumptions about the speed, suppose after they have each traveled one mile in opposite directions (as seen by a stationary observer at the origin) then X sends a flash of light to Z. Then Z will receive the flash of light when each has traveled 2 additional miles.

    If you think of X going west and sending the signal when he is at -1 and Z is at +1, then the signal will arrive when Z is at +3. The light goes approx twice as fast as the objects so it will have gone the 4 units from -1 to +3 in the same time it takes for Z to go from +1 to +3.

    Think of it from the standpoint of the stationary observer. He sees the flash emitted and travel (in his reference frame) from -1 to 3.

    The same is true even if they each travel 99% of c, in opposite directions. Given enough time, the flash of light will always catch up to

    Z since Z is traveling at less than the speed of light.
     
    Last edited: Feb 18, 2009
  7. Feb 18, 2009 #6

    mgb_phys

    User Avatar
    Science Advisor
    Homework Helper

    Doh - yes, sorry I was thinking of something else.
    As soon as the light leaves X it is moving at C in the origin reference frame.
     
  8. Feb 18, 2009 #7
    cheers for the help!

    i think im beginning to understand, though it is quite hard to comprehend. Does light, always only move at c in accordance to a centralised reference frame (the frame of Y, the source of the whole system) i.e the reference frames of both X & Z are irrelevant, and moving objects have nothing at all to do with electromagnetic radiation (aside from space-time curvature ect). I assume this reference frame must be the origin of the big bang? is there a name for this universal reference frame of C? i gather this means the light is also hitting Z at exactly C and the wavelength of C is not affected by the speed of the object it is leaving/impacting.

    Ok, so what if you reset this environment, dump a load of heavy elements in there as well & do the same thing? could the EM radiation be slowed down (by passing through substance) to the point at which it would never reach Z, assuming the stability of this environmnent? ; to rephrase, if i shone a torch through the atmosphere into space, would it speed up as it entered vaccum to C? Assuming an instant change from gas to the vaccum of space, would there be acceleration time or would it be instantaneous?

    Apologies for all of the questions guys, & thanks again for your help its much appreciated.
     
    Last edited: Feb 18, 2009
  9. Feb 18, 2009 #8

    Dale

    Staff: Mentor

    Hehe, no problem. I figured it must've been a late-night post.
     
  10. Feb 18, 2009 #9
    No, you are not starting to understand :)

    There are no 'special' rest frames, in SR all frames have equal rights
    Speed of light is C in *any* frame.

    In the rest frame of X, speed of Y is, say, 0.99, but speed of Z wont be 1.98, as you expect. If will be less then C even grater then 0.99c
    Addition of velocities in relativity does not work they way you got used to.
     
    Last edited: Feb 18, 2009
  11. Feb 18, 2009 #10
    Ok, i am not beginning to understand, i am completely confused.

    could you tell me the formula that is used to calculate the relative speeds of the objects in this scenario?
     
  12. Feb 18, 2009 #11

    Dale

    Staff: Mentor

    Here is the HyperPhysics page on http://hyperphysics.phy-astr.gsu.edu/hbase/Relativ/einvel2.html" [Broken]. As Dimitry67 mentioned, you can use this formula to determine that something which travels at c in one frame travels at c in any other frame also.
     
    Last edited by a moderator: May 4, 2017
  13. Feb 18, 2009 #12
    ahh thankyou.. thats what im after :)
     
  14. Feb 22, 2009 #13
    In relativistic physics, which is the reality, the coordinate frame is critical. In the example, x is moving to west and z to east fast and z is receiving a light from x, we think it may take long time for the light to reach z, because z moves very fast, but remember that here we are using the y as a reference frame. Now if we take z as a reference frame, then we can say the light will get to z very quick because the light is coming to z at full speed of light, so the time concept changes quite depending on the reference frame choice, and all relativistic. So the time elapsed from x to z can be long and also short -- both are correct, which is an interesting but critical fact of relativity.
     
  15. Feb 22, 2009 #14

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    If one object is moving at speed u with respect to a given reference frame, and another object is moving in exactly the opposite direction with speed v, then the speed of either one, relative to the other is
    [tex]\frac{u+ v}{1+\frac{uv}{c^2}}[/tex]
    In particular, if u= v= (1/2)c+ 1 then u+ v= c+ 2 but uv= (1/4)c2+ c+ 1 so that uv/c2= (1/4)+ 1/c+ 1/c2. Since 1/c and 1/c2 are extremely small, we can drop them without error (in the first few thousand decimal places) and have
    [tex]\frac{c+ 2}{1+ 1/4}= \frac{c+2}{\frac{5}{4}}= \frac{4}{5}(c+ 2)< c[/tex].
     
  16. Mar 10, 2009 #15
    Yes- you must use Lorentz addition of velocity instead of the Galilean formula.
     
  17. Mar 14, 2009 #16
    To communicate in any practical sense you need wavelength and frequency. The wave length of the 'light' from X as observed from Z will be infinite, ie. redshifted to extreme. The bit that I can't figure out is that Y will be able to communicate with X, get the communique and then retransmit to Z but I'm sure this must violate GR somehow.
     
  18. Mar 14, 2009 #17

    Dale

    Staff: Mentor

    No, the redshift will be finite. In fact, the recieved frequency will be about 1/3 of the transmitted frequency.
     
  19. Mar 14, 2009 #18
    If the speed of separation was 2c what would be the reduction in the frequency then?
     
    Last edited: Mar 14, 2009
  20. Mar 14, 2009 #19

    Dale

    Staff: Mentor

    You cannot have a speed of separation of 2c, it must be strictly less than 2c.
     
  21. Mar 15, 2009 #20
    Ok - what about the frequency reduction for 1.9c?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Faster than light illusion
  1. Faster than light? (Replies: 10)

Loading...