Hey again,(adsbygoogle = window.adsbygoogle || []).push({});

I have a question on a couple of things related to feynman diagrams but also the relativistic scalar propagator term.

First of all, this interaction:

The cross represents a self-interaction via the mass and characterised by the term: -im^2, is this just some initial state then self-interacting with itself via the mass, with nothing changing and it entering into a final state the same as the initial state? Can anybody explain what exactly is happening in this interaction?

My second question is on the propagator for a relativisitc scalar particle, I believe it has form:

[tex]\frac{i}{E^{2}-\mathbf{p}^{2}-m^{2}}[/tex]

My professor said that this is where this form comes from, he said to imagine summing up all the possible number of self-interaction from 0 self interactions to (presumably) and infinite number of interactions, so :

So the first line has no mass interaction so m=0 and the factor for the first one is :

[tex]\frac{i}{E^{2}-\mathbf{p}^{2}}[/tex]

then the second line has one mass interaction so the factor associated with it is :

[tex]\frac{i}{E^{2}-\mathbf{p}^{2}}(-im^{2})\frac{i}{E^{2}-\mathbf{p}^{2}}[/tex]

and the third line has 2 mass interactions and so the factor is :

[tex](\frac{i}{E^{2}-\mathbf{p}^{2}})^3(-im^{2})^2[/tex]

And so we sum all these factors up (to the maximum number of self-interactions) and can make factorisation below:

[tex]\frac{i}{E^{2}-\mathbf{p}^{2}}(1+\frac{m^{2}}{E^{2}-\mathbf{p}^{2}}+\frac{m^{4}}{(E^{2}-\mathbf{p}^{2})^2}+\cdots )[/tex]

We use identity:

[tex](1+x)^{-1}=1+x+x^{2}+x^{3}+\cdots\: ,\: x=\frac{m^{2}}{E^{2}-\mathbf{p}^{2}}[/tex]

and thus obtain the relativistic scalar propagator:

[tex]\frac{i}{E^{2}-\mathbf{p}^{2}-m^{2}}[/tex]

How does this work? Is the scalar interaction just the sum of all the self-interactions by mass?

Thanks,

SK

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Feynman diagrams and relativistic propagators

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

Loading...

Similar Threads - Feynman diagrams relativistic | Date |
---|---|

I Virtual particles in Feynman diagrams | Friday at 8:55 AM |

I Calculating the fine structure constant in Feynman diagrams | Friday at 8:47 AM |

I Why is there an arrow mediating a process in a Feynman diagram? | Thursday at 2:14 PM |

I Feynman Diagram-Momentum conservation in primitive vertex | Thursday at 2:06 PM |

I Neutron Star Feynman Diagram | Nov 20, 2017 |

**Physics Forums - The Fusion of Science and Community**