1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Field and ring homomorphism

  1. Nov 11, 2005 #1
    "Let F be a field and let f:F->R be a ring homomorphism satisfying f(0) != f(1). Show that f is necessarily injective."

    Assume f(a)=f(b), then f(a)-f(b)=0R => f(a-b)=0R. f(0F)=0R and therefore a=b.



    But this implies that every homomorphism is injective. How can that be?
     
    Last edited by a moderator: Nov 11, 2005
  2. jcsd
  3. Nov 11, 2005 #2

    matt grime

    User Avatar
    Science Advisor
    Homework Helper

    It at best implies every *field* homomorphism is either the zero map or an injection. This is not surprising: the kernel of a ring homomorphism (so in particular a field homomorphism) is an ideal, but fields have no nontrivial ideals thus the kernel is either trivial or all of the field.

    However your proof doesn't show even that.

    How did you deduce that f(a-b)=0 implies a-b=0?
     
  4. Nov 11, 2005 #3
    It appears I assumed f is injective to begin with; circular logic, I'm afraid.
     
  5. Nov 11, 2005 #4

    matt grime

    User Avatar
    Science Advisor
    Homework Helper

    Suppose f(x)=0, and x is not zero. What is special about fields (or any division algebras) in respect of non-zero elements in the field?
     
  6. Nov 11, 2005 #5
    Let a' denote the multiplicative inverse of a. Since F is a field, f(aa')=f(a)f(a')=f(1). By hypothesis, f(1)!=f(0)=0R. Therefore, f(a) and f(a') are non-zero. So ker(f)={0F}. By theorem (6.12), f is injective.

    The image of f is by def surjective. Therefore the image of f is isomorphic to F. I think.
     
    Last edited by a moderator: Nov 11, 2005
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Field and ring homomorphism
  1. Ring homomorphism (Replies: 3)

  2. Ring homomorphism (Replies: 10)

  3. Ring homomorphism (Replies: 1)

Loading...