O.K.(adsbygoogle = window.adsbygoogle || []).push({});

Here it is:

Prove or find a counter example.

Suppose E/F, and K/F. Then E~K (iso.) => E and K are F-isomorphic.

I can prove it for F=Q or any finite field.

Is it true in general?

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Fields- again

Loading...

Similar Threads - Fields again | Date |
---|---|

I Need clarification on a theorem about field extensions/isomorphisms | Dec 19, 2017 |

I Splitting Fields: Anderson and Feil, Theorem 45.6 ... | Jun 23, 2017 |

I Splitting Fields: Anderson and Feil, Theorem 45.5 ... | Jun 22, 2017 |

I Splitting Fields: Anderson and Feil, Theorem 45.4 ... | Jun 21, 2017 |

A From Lie algebras to Dynkin diagrams and back again | Apr 22, 2017 |

**Physics Forums - The Fusion of Science and Community**