Find B such that AB=BA (Linear Alg)

  • Thread starter QuarkCharmer
  • Start date
In summary, the conversation discusses how to find a matrix B such that AB = BA where A is a 3x3 matrix and B is not the zero or identity matrix. The original approach was to set up a system of 9 equations and 9 unknowns, but it was found to be under-determined. Other approaches were suggested, such as starting with a simpler 2x2 matrix and working up, or using scalar multiples of A or its inverse. Ultimately, there are many possible solutions for B, not just the ones mentioned in the conversation.
  • #1
QuarkCharmer
1,051
3

Homework Statement


This is from Lay, 2.1 #11 (the second part). Not a homework problem, just for fun.

Let A be the 3x3 matrix, A = [1,1,1; 1,2,3; 1,4,5]. Find a matrix B such that:
[tex]AB = BA[/tex]
where B is not the zero or identity matrix

Homework Equations



The Attempt at a Solution



Okay, so I know that typically, AB != BA, since matrix multiplication is non-commutative, but in some cases it can happen. What I did was make some 3x3 matrix B:

B = [a,b,c; d,e,f; g,h,i]

Then I wrote out AB = BA in matrix form, and solved both sides. Let's call AB matrix C, and BA matrix D. I set each entry in C to it's corresponding entry in D to form a system of 9 equations and 9 unknowns. I turned this into a 9x10 augmented matrix and attempted to rref it with my TI-89 but the resulting matrix is too big to display on the screen. I can scroll right and left, but I can't see anything below row 6.

Now, I am pretty confident that, if I did find a value for each entry in B (a,b,c,...,i) then it would form a matrix B such that AB = BA. But I don't think this is the right way to go about this problem at all. I can't believe they would expect me to solve 9 equations with 9 unknowns.

So my questions are:

1.) Would my approach have worked, say, if I computed it in mathematica.

and

2.) What is the proper approach to tackle this problem? I know there must be some way to go about this that is reasonable.Thanks!
-QC
 
Last edited:
Physics news on Phys.org
  • #2
Why not just compute it be hand? You don't need software for a 3x3.
 
  • #3
It's a 9x10 (augmented),
I assumed B was 3x3. A and B both have 9 entries, so that's 9 equations. Unless there is some other way to go about it that I am not seeing.
 
  • #4
If this:

2. Matrix Algebra

Introductory Example: Computer Models in Aircraft Design

2.1 Matrix Operations

2.2 The Inverse of a Matrix

2.3 Characterizations of Invertible Matrices

2.4 Partitioned Matrices

2.5 Matrix Factorizations

...

is the second chapter of your book then read section 2.2 & come back to the question
 
  • #5
That's the book (well the chapters). I guess I'll make note of it and skip it. Seems like they would ask questions possible with only the knowledge provided in chapters 1-2.1.

Would my method have worked, if I cared to work out the 9x9 matrix?
 
  • #6
Note that if you were to write this matrix equation, it would be three equations, not nine. Therefore the system is under-determined, and there may be many possible solutions. I'm not sure how you got nine equations out of it; they can't be unique.
 
  • #7
your method would work, and it would find all possible matrices for B, though I certainly wouldn't want to go through all that work

You could just forget about the values of A, and think about what matrices would make AB=BA, you have the zero matrix and the identity, but what other simple matrices can you come up with?

You could also just start off with a 2x2 matrix and see if it gives you some insight.
 
  • #8
I can't think of any way to form this as a 3x3 matrix.

Here is how I get 9x9.
a2u2rc.jpg

The equations on the right are the simplified equations from the left. Then the standard matrix formed by the 9 equations is at the bottom. In this case vector x has components a,b,c,...


CornMuffin, how would you know to start off with a 2x2?

You could just forget about the values of A, and think about what matrices would make AB=BA, you have the zero matrix and the identity, but what other simple matrices can you come up with?

Well, the identity and zero matrix are the only solutions I can think of for any A, such that AB=BA. Unless they just want some scalar multiple of the identity matrix, which I think would work (trying that now to be sure). Something like [5,0; 0,5], but that's still the identity matrix basically.
 
  • #9
QuarkCharmer said:
Unless they just want some scalar multiple of the identity matrix, which I think would work (trying that now to be sure). Something like [5,0; 0,5], but that's still the identity matrix basically.

Sure, but it's not the identity matrix, so it is one possible solution :)
 
  • #10
If that's the answer they were looking for that is pretty lame. There still "could" be some matrix B which satisfies this argument. I'll go with some cheap multiple of the identity matrix for now and revisit after I read the rest of chapter 2.

Thanks for the help
 
  • #11
Sometimes it is easier to start off with a simpler matrix... by using any simple 2x2 matrix first, it might help you find a matrix B with a larger matrix

edit: there are other matrices that would work that is not a multiple of the identity
 
  • #12
Once you get all your equations set equal to each other, you have
$$
\begin{pmatrix}
0&-1&-1&1&0&0&1&0&0&:0\\
1&1&4&0&-1&0&0&-1&0&:0\\
-1&-3&-2&0&0&1&0&0&1&:0\\
1&0&0&1&-1&-1&3&0&0&:0\\
0&1&0&-1&0&-4&0&3&0&:0\\
0&0&0&-1&-3&-3&0&0&3&:0\\
1&0&0&4&0&0&4&-1&-1&:0\\
0&1&0&0&4&0&-1&3&-4&:0\\
0&0&1&0&0&4&-1&-3&0&:0
\end{pmatrix}
$$
 
  • #13
QuarkCharmer said:
If that's the answer they were looking for that is pretty lame. There still "could" be some matrix B which satisfies this argument. I'll go with some cheap multiple of the identity matrix for now and revisit after I read the rest of chapter 2.

Thanks for the help

I think that solving nine simultaneous equations is pretty "lame." Finding simple answers to problems that seem complicated is what is cool.

But I don't know what the authors were looking for. That depends on whether they're the type of author that has a sense of humor or not.
 
  • #14
Steely Dan said:
I think that solving nine simultaneous equations is pretty "lame." Finding simple answers to problems that seem complicated is what is cool.

But I don't know what the authors were looking for. That depends on whether they're the type of author that has a sense of humor or not.

you can use a scalar multiple of the matrix A, or of the inverse of A, or you can even use something like B=A^3+5A+2A^-1 :D
 
  • #15
I haven't done the math, but perhaps it might be easier to find A-1 so you get B = A-1BA.
 
  • #16
There's an extremely easy choice of B, an extremely easy choice...
 
  • #17
QuarkCharmer said:
If that's the answer they were looking for that is pretty lame. There still "could" be some matrix B which satisfies this argument.

If you make B the inverse of A, that would work; however I don't think that's what the author wants for an answer since inverses are covered in the next section...
 
  • #18
You all are making this much too complicated. Why not just let B=A (I'm guessing this is what you were getting at, sponsoredwalk).
 
  • #19
Citan Uzuki said:
You all are making this much too complicated. Why not just let B=A (I'm guessing this is what you were getting at, sponsoredwalk).

Maybe A is a bit simpler than A⁵³⁵ :redface:
 
  • #20
Okay... let's try something.

B is not supposed to be the zero matrix or the identity.
So let's pick the "best" next thing...
Pick a matrix with all entries set to zero, except the top left one...

Yep, that does the trick! :wink:

I guess you will need to set more conditions...

Edit: Oh, and yes, B=A or B=A-1 will also do the trick. :)
 
  • #21
I don't have mathematica either, but I just tried to see what wolframalpha.com makes of it:
http://m.wolframalpha.com/input/?i=solve+{{1%2C1%2C1}%2C{+1%2C2%2C3}%2C{+1%2C4%2C5}}*{{a%2Cb%2Cc}%2C{d%2Ce%2Cf}%2C{g%2Ch%2Ci}}+%3D+{{a%2Cb%2Cc}%2C{d%2Ce%2Cf}%2C{g%2Ch%2Ci}}*{{1%2C1%2C1}%2C{+1%2C2%2C3}%2C{+1%2C4%2C5}}&x=0&y=0

Wolframalpha gives a generic solution based on a, b, and c.
If we pick (1,0,0) we get the identity matrix.
If we pick (1,1,1) we get matrix A back.
If we pick (0,1,1) we get [0,1,1; 1,1,3; 1,4,4].
Take your pick!
 
  • #22
I like Serena said:
Okay... let's try something.

B is not supposed to be the zero matrix or the identity.
So let's pick the "best" next thing...
Pick a matrix with all entries set to zero, except the top left one...

Yep, that does the trick! :wink:

This doesn't work. Multiplying by [itex]B[/itex] on the right leaves ones on the first column, whereas multiplying by [itex]B[/itex] on the left leaves ones on the first row.
 
  • #23
Steely Dan said:
This doesn't work. Multiplying by [itex]B[/itex] on the right leaves ones on the first column, whereas multiplying by [itex]B[/itex] on the left leaves ones on the first row.

Oops!
 

1. How do I find B such that AB=BA?

In order to find B such that AB=BA, you will need to use the properties of matrices and the concept of inverse matrices. You can first rewrite the equation as AB-BA=0 and then factor out B to get B(A-I)=0. This means that either B=0 or A-I=0. If A-I=0, then B can be found by taking the inverse of A and multiplying it by itself. If A-I is not equal to 0, then B must be equal to 0 in order for the equation to hold true.

2. Can B be any matrix that satisfies AB=BA?

No, B cannot be any matrix. The matrix B must be square and have the same dimensions as A in order for the equation AB=BA to be valid. Additionally, B must have the properties of an inverse matrix as mentioned in the previous question's answer.

3. Why is it important to be able to find B such that AB=BA?

Being able to find B such that AB=BA is important because it allows us to solve systems of equations using matrices. It also helps us to understand the properties and behavior of matrices, which have many applications in various fields such as engineering, physics, and computer science.

4. Can the equation AB=BA hold true for non-square matrices?

No, the equation AB=BA cannot hold true for non-square matrices. This is because the left side of the equation will have different dimensions than the right side, making them incompatible. In order for the equation to hold true, both matrices must be square and have the same dimensions.

5. Are there any real-world examples of AB=BA?

Yes, there are many real-world examples of AB=BA. One common example is the calculation of moment of inertia in physics. Moment of inertia is given by the formula I=mr^2, where m is the mass and r is the distance from the rotational axis. This is equivalent to the equation AB=BA, where A is the matrix representing the mass and B is the matrix representing the distance squared. In this case, B is the inverse of A, just like in the general case of AB=BA.

Similar threads

  • Precalculus Mathematics Homework Help
Replies
18
Views
2K
  • Calculus and Beyond Homework Help
Replies
2
Views
383
  • Calculus and Beyond Homework Help
Replies
1
Views
949
  • General Math
Replies
3
Views
1K
  • Calculus and Beyond Homework Help
Replies
6
Views
2K
  • Calculus and Beyond Homework Help
Replies
4
Views
1K
  • Calculus and Beyond Homework Help
Replies
3
Views
568
  • Calculus and Beyond Homework Help
Replies
26
Views
2K
  • Calculus and Beyond Homework Help
Replies
5
Views
1K
  • Calculus and Beyond Homework Help
Replies
5
Views
1K
Back
Top