# Find the diameter of the hole

1. Feb 26, 2013

### icesalmon

1. The problem statement, all variables and given/known data
A solid is generated by revolving the region bounded by y = x2/2 and y = 2 around the y-axis. A hole, centered along the axis of revolution, is drilled through this solid so that one-fourth of the volume is removed. Find the diameter of the hole.

3. The attempt at a solution
I'm going with cylindrical shells this time around. I'm integrating from x = 0 to x = 2. I think my height is 2-x and my radii are all going to be generated by the function x2/2. After integration, I get the overall volume is to be 4pi/3. If one quarter of that is taken out after drilling this hole, I have the volume of this figure to be pi. I believe it's a right cylindrical shaped whole, so the volume of a cylinder is pir2h. I need the radius of one of these cross sections so I need some way to relate the volume. Or maybe I don't, this is where I need assistance. Hopefully i'm not over-thinking this. Thanks.

2. Feb 26, 2013

### icesalmon

I believe i've made a mistake on the radius / height. Radius = x and Height = x2/2, after integration I get vt = 4pi so the volume of the cylinder is 3pi.

3. Feb 26, 2013

### haruspex

Yes, except that the removed core is not exactly a cylinder. What do you get for the diameter of the hole?

4. Feb 26, 2013

### icesalmon

I don't know how to find it, especially since I don't know what the figure of the hole is.

Edit: the diameter seems like it would be 2(y/2)1/2 but that's sort of a shot in the dark.
Edit: that's wrong, nvm.

Last edited: Feb 26, 2013
5. Feb 26, 2013

### SammyS

Staff Emeritus
The height of each shell should be 2 - x2/2 .

Do the same integral but have x go from 0 to a. set that volume to 1/4 the volume without the hole & solve for a .

6. Feb 26, 2013

### icesalmon

I'm getting two answers..2 and 2(21/2)
and neither are correct.

Should have included this, sorry. My integrand here has been changed to (x)(2-x2/2). When my bounds are [0,a] I get 2pi(a2 - a4/8). When my bounds are [0,2] I get the volume as 4pi. If I set the first part equal to 1/4 of the total volume I get 2pi(a2 -a4/8) = pi and I solve it from there to get that a = 21/2

Last edited: Feb 26, 2013
7. Feb 26, 2013

### haruspex

Right
Wrong.

8. Feb 26, 2013

### icesalmon

thanks, got it now.

Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted