1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Find the exponential Fourier series of x(t) = 2 + 0.5cos(t+45)+2cos(3t)-2sin(4t+30)

  1. Oct 7, 2007 #1
    1. The problem statement, all variables and given/known data

    For the periodic signal

    [tex]x(t)\,=\,2\,+\,\frac{1}{2}\,cos\left(t\,+\,45^{\circ}\right)\,+\,2\,cos\left(3\,t\right)\,-\,2\,sin\left(4\,t\,+\,30^{\circ}\right)[/tex]

    Find the exponential Fourier series.


    2. Relevant equations

    Euler’s Formula
    [tex]x(t)\,=\,A\,cos\left(\omega_0\,t\,+\,\phi\right)\,=\,A\,\left[e^{j\,\left(\omega_0\,t\,+\,\phi\right)}\,+\, e^{-j\,\left(\omega_0\,t\,+\,\phi\right)}\right][/tex]


    3. The attempt at a solution

    To get [itex]\omega_0[/itex], we need to find the least common denominator between the following periods…

    [tex]\frac{2\,\pi}{3},\,2\,\pi,\,\frac{\pi}{2}[/tex]

    Which is [itex]2\,\pi[/itex].


    So, now I use the formula [itex]\omega_0\,=\,\frac{2\,\pi}{T}[/itex]…

    [tex]\omega_0\,=\,\frac{2\,\pi}{2\,\pi}\,=\,1[/tex]


    Now, I use Euler’s formula to convert the cos and sin to exponentials…

    [tex]x(t)\,=\,2\,+\,\frac{1}{2}\,\left[e^{j\left(t\,+\,45^{\circ}\right)}\,+\,e^{-j\left(t\,+\,45^{\circ}\right)\right]\,+\,2\,\left[e^{j\left(3\,t\right)}\,+\,e^{-j\left(3\,t\right)}\right]\,-\,2\left[e^{j\left(4\,t\,-\,60^{\circ}\right)}\,+\,e^{-j\left(4\,t\,-\,60^{\circ}\right)}\right][/tex]

    I don’t know if the last term (sin) is supposed to be kept as [tex]4\,t\,+\,30^{\circ}[/tex]

    OR changed to a cosine to fit Euler’s formula by subtracting ninety degrees: [tex]4\,t\,-\,60^{\circ} [/tex]


    I assumed the latter, is that correct?
     
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted