1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Find the inner product of the Pauli matrices and the momentum operator?

  1. Apr 13, 2012 #1
    1. The problem statement, all variables and given/known data

    Show that the inner product of the Pauli matrices, σ, and the momentum operator, [itex]\vec{p}[/itex], is given by:

    σ [itex]\cdot[/itex] [itex]\vec{p}[/itex] = [itex]\frac{1}{r^{2}}[/itex] (σ [itex]\cdot[/itex] [itex]\vec{r}[/itex] )([itex]\frac{\hbar}{i}[/itex] r [itex]\frac{\partial}{\partial r}[/itex] + iσ [itex]\cdot[/itex] [itex]\vec{L}[/itex]),

    where [itex]\vec{L}[/itex] is the angular momentum operator and [itex]\vec{r}[/itex] is the displacement vector.

    2. Relevant equations

    p[itex]_{x}[/itex] = [itex]\frac{\hbar}{i}[/itex] [itex]\frac{\partial}{\partial x}[/itex]
    [itex]\vec{L}[/itex] = [itex]\vec{r}[/itex] × [itex]\vec{p}[/itex]

    3. The attempt at a solution

    I figured that I could write:

    [itex]\vec{p}[/itex] = [itex]\frac{\hbar}{i}[/itex] [itex]\frac{\partial}{\partial r}[/itex] [itex]\hat{r}[/itex]

    So then:
    σ [itex]\cdot[/itex] [itex]\vec{p}[/itex] = (σ [itex]\cdot[/itex] [itex]\hat{r}[/itex]) [itex]\frac{\hbar}{i}[/itex] [itex]\frac{\partial}{\partial r}[/itex]
    = [itex]\frac{1}{r}[/itex] (σ [itex]\cdot[/itex] [itex]\vec{r}[/itex]) [itex]\frac{\partial}{\partial r}[/itex]

    ... But that clearly gets me nowhere. Help?
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted