- #1

- 12

- 0

The limit as x approaches 0 of (x csc(2x))/cos(5x)

The answer is 1/2, which graphing confirms, but hell if I know how to get rid of the 5x and still come up with 1/2. It is boggling my mind. Any help would be appreciated.

- Thread starter MassInertia
- Start date

- #1

- 12

- 0

The limit as x approaches 0 of (x csc(2x))/cos(5x)

The answer is 1/2, which graphing confirms, but hell if I know how to get rid of the 5x and still come up with 1/2. It is boggling my mind. Any help would be appreciated.

- #2

rock.freak667

Homework Helper

- 6,230

- 31

csc(2x)=1/sin(2x)

if I remember correctly

[tex]\lim_{x \rightarrow 0} \frac{x}{sinx} =1[/tex]

if I remember correctly

[tex]\lim_{x \rightarrow 0} \frac{x}{sinx} =1[/tex]

- #3

- 12

- 0

- #4

- 459

- 0

Re-arrange then use L'Hopital

[tex] \displaystyle\lim_{x\to 0} \frac{x\csc(2x)}{\cos(5x)} [/tex]

[tex]= \displaystyle\lim_{x\to 0} \frac{x\csc(2x)}{1} [/tex]

[tex]= \displaystyle\lim_{x\to 0} \frac{x}{\sin(2x)} \to \frac{0}{0}[/tex]

[tex] = \displaystyle\lim_{x\to 0} \frac{1}{2\cos(2x)} = \frac{1}{2}[/tex]

[tex] \displaystyle\lim_{x\to 0} \frac{x\csc(2x)}{\cos(5x)} [/tex]

[tex]= \displaystyle\lim_{x\to 0} \frac{x\csc(2x)}{1} [/tex]

[tex]= \displaystyle\lim_{x\to 0} \frac{x}{\sin(2x)} \to \frac{0}{0}[/tex]

[tex] = \displaystyle\lim_{x\to 0} \frac{1}{2\cos(2x)} = \frac{1}{2}[/tex]

Last edited:

- #5

- 12

- 0

Well, we haven't covered L'Hopital yet. Also, the denominator is cos(5x), not 5x.

- #6

- 867

- 0

You need to rewrite the limit to use other limits that you know, such as sinx/x

[tex]\lim_{x \rightarrow 0} \frac{x\csc2x}{\cos5x} = \lim_{x \rightarrow 0} (x\csc2x * \frac{1}{\cos5x}) = \lim_{x \rightarrow 0} \frac{x}{\sin2x} * \lim_{x \rightarrow 0} \frac{1}{\cos5x}[/tex]

[tex]= \lim_{x \rightarrow 0} \frac{1}{2} \frac{2x}{\sin2x} * \lim_{x \rightarrow 0} \frac{1}{\cos5x} = \frac{1}{2} \lim_{x \rightarrow 0} \frac{1}{\frac{\sin2x}{2x}} * \lim_{x \rightarrow 0} \frac{1}{\cos5x}[/tex]

For [tex]\lim_{x \rightarrow 0} \frac{sin2x}{2x}[/tex]

let k = 2x. Since 2x goes to 0 as k goes to 0,

[tex]\lim_{x \rightarrow 0} \frac{\sin2x}{2x} = \lim_{k \rightarrow 0} \frac{\sin k}{k}[/tex]

[tex]\lim_{x \rightarrow 0} \frac{x\csc2x}{\cos5x} = \lim_{x \rightarrow 0} (x\csc2x * \frac{1}{\cos5x}) = \lim_{x \rightarrow 0} \frac{x}{\sin2x} * \lim_{x \rightarrow 0} \frac{1}{\cos5x}[/tex]

[tex]= \lim_{x \rightarrow 0} \frac{1}{2} \frac{2x}{\sin2x} * \lim_{x \rightarrow 0} \frac{1}{\cos5x} = \frac{1}{2} \lim_{x \rightarrow 0} \frac{1}{\frac{\sin2x}{2x}} * \lim_{x \rightarrow 0} \frac{1}{\cos5x}[/tex]

For [tex]\lim_{x \rightarrow 0} \frac{sin2x}{2x}[/tex]

let k = 2x. Since 2x goes to 0 as k goes to 0,

[tex]\lim_{x \rightarrow 0} \frac{\sin2x}{2x} = \lim_{k \rightarrow 0} \frac{\sin k}{k}[/tex]

Last edited:

- #7

- 459

- 0

L'Hopital

[tex]\displaystyle\lim_{x\to a} \frac{f(x)}{g(x)} = \displaystyle\lim_{x\to a}\frac{f'(x)}{g'(x)}[/tex]

if f(a)=g(a)=0 (or infinity)

[tex]\frac{f(x)}{g(x)}=\frac{f(a)+(x-a)f'(a)+\frac{1}{2!}(x-a)^2g''(a)\cdots}{g(a)+(x-a)g'(a)+\frac{1}{2!}(x-a)^2g''(a)+\cdots}=\frac{(x-a)f'(a)+\frac{1}{2!}(x-a)^2g''(a)\cdots}{(x-a)g'(a)+\frac{1}{2!}(x-a)^2g''(a)+\cdots}=\frac{f'(a)+(x-a)g''(a)\cdots}{g'(a)+(x-a)g''(a)+\cdots}=\frac{f'(x)}{g'(x)}[/tex]

f(a) and g(a) disappear and can divide top and bottom by 1/2(x-a).

example

[tex] \displaystyle\lim_{x\to 0} \frac{\sin (x)}{x} [/tex]

Top and bottom tend to 0, so,

[tex]\displaystyle\lim_{x\to 0} \frac{\sin (x)}{x} =\displaystyle\lim_{x\to 0} \frac{\cos (x)}{1} = 1 [/tex]

- #8

- 867

- 0

- #9

- 12

- 0

Perhaps if I would have remembered that the cosine of zero is one, I wouldn't have been in such a pickle. Hah.

Thanks to everyone for their assistance.

- Last Post

- Replies
- 2

- Views
- 1K

- Replies
- 7

- Views
- 6K

- Replies
- 11

- Views
- 2K

- Last Post

- Replies
- 3

- Views
- 985

- Last Post

- Replies
- 4

- Views
- 2K

- Last Post

- Replies
- 5

- Views
- 1K

- Last Post

- Replies
- 3

- Views
- 796

- Last Post

- Replies
- 0

- Views
- 830

- Last Post

- Replies
- 7

- Views
- 15K

- Last Post

- Replies
- 4

- Views
- 2K