Finding an orthonormal basis

We have [tex]B=\left ( \overrightarrow{b_{1}},\overrightarrow{b_{2}} \right )[/tex] a basis of R^2 such as [tex]\left \| \overrightarrow{b_{1}} \right \|=1[/tex]
[tex]\overrightarrow{b_{1}}\cdot \overrightarrow{b_{2}}=1[/tex] and [tex]\overrightarrow{b_{2}}=2[/tex]. We also have [tex]\overrightarrow{e_{1}}=\overrightarrow{b_{1}}-\frac{1}{2}\overrightarrow{b_{2}}[/tex].
Find [tex]\overrightarrow{e_{2}}[/tex] such as [tex]C=(\overrightarrow{e_{1}},\overrightarrow{e_{2}})[/tex] is an orthonormal basis.

What I did:

We first construct [tex]B_{\perp }[/tex] by Gram-Schmidt.
[tex]\overrightarrow{b_{1\perp }}=\overrightarrow{b_{1}}[/tex]
[tex]\overrightarrow{b_{2\perp }}=\overrightarrow{b_{2}}-\textup{proj}_{W_{1}}\overrightarrow{b_{2}}=\overrightarrow{b_{2}}-\frac{\overrightarrow{b_{2}}\cdot \overrightarrow{b_{1}}}{\overrightarrow{b_{1}}\cdot \overrightarrow{b_{1}}}\overrightarrow{b_{1}}=\overrightarrow{b_{2}}-\overrightarrow{b_{1}}[/tex]

The magnitude of [tex]\overrightarrow{b_{2}}-\overrightarrow{b_{1}}[/tex] is sqrt(3). I got this using the law of cosines on a triangle with a Pi/3 angle and two sides of magnitude 1 and 2.

So [tex]B_{\perp }=\left (\overrightarrow{b_{1}},\frac{\overrightarrow{b_{2}}-\overrightarrow{b_{1}}}{\sqrt{3}} \right )[/tex].

[tex]\overrightarrow{e_{1}}[/tex] can then be written using transition matrix as [tex]\overrightarrow{e_{1}}=\frac{1}{2}\overrightarrow{b_{1}}-\frac{\sqrt{3}}{2}\left (\frac{\overrightarrow{b_{2}}-\overrightarrow{b_{1}}}{\sqrt{3}} \right )[/tex].

Let [tex]\overrightarrow{e_{2}} = x\overrightarrow{b_{1}}+y\overrightarrow{b_{2}} = \left (x+y \right )\overrightarrow{b_{1}}+\sqrt{3}y\left (\frac{\overrightarrow{b_{2}}-\overrightarrow{b_{1}}}{\sqrt{3}} \right )[/tex]

Since [tex]B_{\perp }[/tex] is orthonormal and we want e2 and e1 orthonormal, we can write:
[tex]\frac{1}{2}\left ( x+y \right )-\frac{\sqrt{3}}{2}\sqrt{3}y=0
\Leftrightarrow x=2y[/tex]

If y=1, then x=2

So [tex]\overrightarrow{e_{2}}=2\overrightarrow{b_{1}}+\overrightarrow{b_{2}}[/tex]. By using law of cosines and a triangle with sides of 2 and 2, I get a magnitude of sqrt(12)

So [tex]\overrightarrow{e_{2}}=\frac{2\overrightarrow{b_{1}}+\overrightarrow{b_{2}}}{\sqrt{12}}[/tex].
Then [tex]C=(\overrightarrow{e_{1}},\overrightarrow{e_{2}})[/tex] is an orthonormal basis.

Any other, faster way to do it?
 

Want to reply to this thread?

"Finding an orthonormal basis" You must log in or register to reply here.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Top Threads

Top