Finding and using the Poynting vector

  • Thread starter Vuldoraq
  • Start date
  • #1
272
0

Homework Statement



Hi, this is a repeat post, I fear I put it in the wrong forum to start with (I put it in advance physics and I think it may be more of an introductory physics question). I'm really sorry if this contravenes any of the rules.

A fat wire, radius a, carries a constant current I, uniformly distributed over it's cross section. A narrow gap in the wire, of width w<<a, forms a parllel-plate capacitor (see attachment, this question refers to question 3, sorry I couldn't cut and paste the picture).

a)Find the electrical and magnetic fields inside the gap, as functions of the distance s from the axis and the time t. Assume the charge is zero at time t=0.

b)Find the energy density uem in the gap and the Poynting vector, S in the gap. Note especially the direction of S

c)Determione the total energy in the gap, as a function of time. Calculate the total power into the gap, by integrating the Poynting vector of the appropriate surface. Check that the power inout is equal to the rate of increase of energy in the gap.

Homework Equations



In the following:
s=distance from the axis of the wire
a=radius of the wire
t=time
I=current
and I'm working in cylinrical polars.

For a parallel plate capacitor,

[tex]\underline{E}=\frac{\sigma}{\epsilon_{0}}[/tex]

For an amperian loop (with Maxwells fix),

[tex]\oint\underline{B}\cdot d\underline{l}=\mu_{0}I_{enc}+\mu_{0}\epsilon_{0}\int\frac{\partial\underline{E}}{\partial t} \cdot d\underline{a}[/tex]

Energy density,

[tex]U_{em}=\frac{1}{2}(\epsilon_{0}E^{2}+\frac{1}{\mu_{0}}B^{2})[/tex]

Poynting Vector,

[tex] \frac{1}{\mu_{0}}\underline{E}\times\underline{B}[/tex]

The Attempt at a Solution



For part a) I found the electric to be,

[tex]\underline{E}=\frac{It}{\epsilon_{0}}\widehat{z}[/tex]

and the magnetic field to be,

[tex] \underline{B}=\frac{\mu_{0}}{2\pi}\frac{Is}{a^2}\widehat{\phi}[/tex]

For part b) I found the energy density to be,

[tex]\frac{I^{2}}{2}*(t^{2}+\frac{s^{2}}{4\pi^{2}a^{4}})[/tex]

and the Poynting vector to be,

[tex]-\frac{\mu_{0}}{2\pi \epsilon_{0}}\frac{I^{2}t s}{a^{2}}\widehat{s}[/tex]

For part c) I have no idea even where to begin.

Please could someone tell me if parts a) and b) are correct and give me a hand for part c)? If you want me show more working just ask (I left it out to keep the post a bit smaller).

Thanks!
 

Answers and Replies

Related Threads on Finding and using the Poynting vector

  • Last Post
Replies
2
Views
12K
  • Last Post
Replies
5
Views
3K
  • Last Post
Replies
0
Views
2K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
2
Views
999
  • Last Post
Replies
4
Views
331
  • Last Post
Replies
7
Views
621
  • Last Post
Replies
2
Views
1K
Replies
2
Views
3K
  • Last Post
Replies
5
Views
11K
Top