1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Finding Center of Mass

  1. Sep 27, 2008 #1
    1. The problem statement, all variables and given/known data
    http://docs.google.com/Doc?id=d277r7r_60c2235gfg


    2. Relevant equations
    [tex]

    M(Rcm)=\int(rdm)

    [/tex]

    3. The attempt at a solution

    Okay, so I've figured out that I have to integrate the radii by the mass element dm, which in this case would be p, because that's the mass/unit area? I think that's right, but even there I'm not sure and the actual integral itself I have no idea how to do for such a weird shape.
     
    Last edited: Sep 27, 2008
  2. jcsd
  3. Sep 28, 2008 #2
    I wouldn't integrate if I were you. There's a way to know where's the center of mass without much mathematics. Thinking is more powerful than mathematics, sometimes.
     
  4. Sep 28, 2008 #3
    Hmm. Could I take the center of mass of the entire circle, assuming there's no cut outs. Then I take the center of mass of the cut-outs, and pretend they act like 'negative' masses, so instead of having the centerr of mass of the composite system get closer to them, they are farther away? So basically pretend this is a 3 particle system and combine the locations of the center of masses, but assume the cutouts have 'negative' masses, so they push away the center of mass instead of bringing it closer?
     
  5. Sep 28, 2008 #4
    Exactly.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Finding Center of Mass
  1. Find center of mass (Replies: 1)

Loading...