Hi all. I'm trying to do a circuit problem in my book. The circuit consists of a resistor, capacitor, inductor and a voltage source all in series. The first part of the question says: Find the resonance frequency and half-power frequencies. My book does go on and solve this problem with two different methods using given formulas for series RLC circuits, however, I would like to solve this circuit without formulas (if possible). My problem is calculating the half-power frequency not the resonance frequency.(adsbygoogle = window.adsbygoogle || []).push({});

Given:

R = 2 Ohms

L = 1 mF

C = .4 microH

My approach:

Transfer function: H(s) = R + sL + 1/sC => H(ω) = j(ω*R*C) + (1 - [ω^2 * L * C])

Magnitude of Transfer function: |H(ω)| = √( (ω*R*C)^2 + (1 - [ω^2 * L * C])^2 )

Set Magnitude of Transfer function equal to 1/√2 or set Magnitude of Transfer function squared equal to 1/2:

|H(ω)| = 1/√2 or |H(ω)|^2 = 1/2

Solving for this I get ω1 = -27k or ω2 = -65k

Obviously this is wrong due to the negative ω's. Not only is the sign wrong but also the magnitude. The book achieved the answers: ω1 = 49k or ω2 = 51k

Can anyone please tell me what I'm doing wrong (don't tell me to use formulas please)?

Thank you for your time.

PS: This is NOT a homework problem.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Finding half-power frequency.

**Physics Forums | Science Articles, Homework Help, Discussion**