Finding Inflection Points (Applied Calc Question)

Sam

The problem: Find the inflection points, if any, for the following: f(x) = e^x + x^-1

I know to find inflection points I have to:

1. Compute f''(x)
2. Determine the points in the domain of f for which f''(x) = 0 or f''(x)
does not exist
3. Determine the sign of f''(x) to the left and right of each point x = c
found in step 2. If there is a change in the sign of f''(x) as we move
across the point x = c, then (c, f(c)) is an inflection point of f.

Well, this is what I came up with:

f'(x) = e^x -x^-2
f''(x)= e^x + 2x^-3

Then, I don't know what to do from there because e^x can never be zero, right? but I don't know. My teacher is saying there are inflection points...

Your help is much appreciated!

Sam

Related Introductory Physics Homework Help News on Phys.org

HallsofIvy

Homework Helper
Yes, ex is never 0, but an inflection point is NOT where "ex= 0". It is where f"= ex+ 2/x3= 0.

There is no "algebraic" way to solve that equation but it certainly has solutions: using Newton's method or a hand-dandy graphing calculator, we have a zero of f", and an inflection point, for x approximately 0.926.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving