1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Finding limit of fraction

  1. Oct 30, 2011 #1
    [tex]\lim_{n\rightarrow ∞}\frac{3^n+2*5^n}{2^n+3*5^n}[/tex]

    I tried using l'hopitals rule and got

    [tex]\lim_{n\rightarrow ∞}\frac{3^n*ln(3)+2(5^n*ln5)}{2^n*ln(2))+3(5^n*ln5)}[/tex]

    I'm not quite sure if that is the right way to approach this. This problem is an early one in the assignment so I assume that it is simple and I am just missing something obvious.

    Thank you!
  2. jcsd
  3. Oct 30, 2011 #2


    Staff: Mentor

    A much simpler approach is to factor 5n out of all terms in the numerator and denominator. Evaluating the limit is pretty easy after that.
  4. Oct 30, 2011 #3
    so then I'd have

    [tex]\lim_{n\rightarrow ∞} \frac{\frac{3}{5}^n+2}{\frac{2}{5}^n+3}[/tex]

    Nevermind, I got it thanks!!!!!
  5. Oct 30, 2011 #4


    Staff: Mentor

    Yes, that's right. The key idea is to find the dominant term in the numerator or denominator, which turns out to be 5n in this problem.
  6. Oct 30, 2011 #5

    [tex]\lim_{n\rightarrow ∞}(\frac{n+1}{n})^n[/tex]

    is l'hoptials rules the correct way to approach it?
    Last edited: Oct 30, 2011
  7. Oct 30, 2011 #6


    Staff: Mentor

    No, since L'Hopital's Rule applies to quotients, and that's not what you have here. (The quotient is raised to a nonconstant power.

    The usual approach to this type of problem is:
    1) Let y = the expression in the limit. Don't include the limit operation.
    2) Take the natural log of both sides to get ln y = ln(expression).
    3) Use the properties of logs to simplify the right side
    4) Take the limit of both sides.
    5) Switch the limit and ln operations to get ln(lim y). I.e., this is the log of what you want.
  8. Oct 30, 2011 #7
    Really appreciate it.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook