1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Finding potential energy of a solid hemisphere on top of another solid hemisphere

  1. Oct 24, 2014 #1
    1. The problem statement, all variables and given/known data
    A solid hemisphere with radius [itex]b[/itex] has its flat surface glued to a horizontal table. Another solid hemisphere with radius [itex]a[/itex] rests on top of the hemisphere of radius [itex]b[/itex] so that the curved surfaces in contact. The surfaces of hemispheres are rough, meaning no slipping occurs between them. Both hemispheres have uniform mass distributions. Two objects are said to be in equilibrium when the top one is upside down
    - that is, with its flat surface parallel to the table but above it. Show that the equilibrium position is stable if [itex]a<3b/5[/itex].

    Variables: a,b
    2. Relevant equations
    I think it's gravitational potential energy. So [itex]mgy =U[/itex]
    and [itex]v_cm = r\omega[/itex] for the top hemisphere
    But this does not seem to go anywhere.

    3. The attempt at a solution
    I am stuck at resolving gravitational potential energy and the no-slip condition into some form so that I can differentiate.
     
  2. jcsd
  3. Oct 28, 2014 #2

    BvU

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Differentiating sounds good. Need some coordinate to describe deviation form the equilibrium position. Then express height of c.o.m. in that coordinate. If the center of mass goes up, stable, if it goes down, unstable. Any idea that keeps things simple ?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Finding potential energy of a solid hemisphere on top of another solid hemisphere
Loading...