- #1

semidevil

- 157

- 2

so given this example, is this right?

p(k;theta) = theta^k * (1 - theta)^(1 - k), k = 0 1, and 0 < theta < 1.

so it's just the product of the function, and I get:

theta^K * 1 - (theta)^(sum from 1 to n of (k - n)).

then I take the natural log, and differentiate it to get

k/theta + (k - n)/ (1 - theta) = 0.

now, all I need to do is to put it in terms of theta...

first, did I do the first part right? in terms of finding the likelihoo function?

there's a lot of variables and I get confused when I do the products