1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

First time

  1. Sep 18, 2005 #1
    I've delayed my ODE and PDE classes as much as I could because I knew it would give me constant and continuous headaches. And I was right.

    Can someone help me solve this basic equation:

    y' + 2y = 4x

    I got y = 4x, which makes no sense.
     
  2. jcsd
  3. Sep 18, 2005 #2

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    You're right, it makes no sense since if y= 4x, y'= 4 so y'+ 2y= 4+ 8x which looks nothing like 4x! How did you get "y= 4x"???

    This is a linear, nonhomogeneous differential equation which I'm sure your textbook talks about. Do you know how to find an "integrating factor". (Every first order differential equation has an "integrating factor" that makes it very easy to solve. Unfortunately, for most equations finding the integrating factor is as hard as solving the equation. For linear equations, however, there is a specific formula that I'll bet is given in your textbook! Look under the heading "linear equations" in the first or second chapters.
     
  4. Sep 18, 2005 #3

    saltydog

    User Avatar
    Science Advisor
    Homework Helper

    Well Icebreaker, whenever you have a first-order ODE like that, calculate the integrating factor and multiply both sides by it. In your case the integrating factor, designated by sigma is:

    [tex]\sigma=e^{2x}[/tex]

    After multiplying both sides by that, the LHS becomes an exact differential and you're left with:

    [tex]d\left(ye^{2x}\right)=4xe^{2x}[/tex]

    Integrating both sides:

    [tex]ye^{2x}=\int 4xe^{2x}[/tex]

    I bet you can finish it (solving for y) and don't forget the constant of integration.

    Feel like doin' 9 more?
     
  5. Sep 18, 2005 #4
    One down, 19 to go... Thanks for the help.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?