Departing from the Navier-Stokes equations for an incompressible flow (with [itex]\rho[/itex] and [itex]\mu=\rho \nu[/itex] constant):(adsbygoogle = window.adsbygoogle || []).push({});

[tex] \frac{Du_i}{Dt}=\frac{\partial u_i}{\partial t}+u_j \frac{\partial u_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} +\nu \frac{\partial^2 u_i}{\partial x_j^2}[/tex]

my book says it follows for a circular flow

[tex]\frac{\rho u_{\theta}^2}{r} = \frac{\partial p}{\partial r}[/tex]

[tex]\frac{u_{\theta}}{\partial t} = \nu [\frac{\partial^2 u_{\theta}}{\partial r^2} + \frac{1}{r} \frac{\partial u_{\theta}}{\partial r}-\frac{u_{\theta}}{r^2}] [/tex]

I can understand part of it. For a circular flow [itex]u_r=0[/tex] So the incompressibility yields that [itex] u_{\theta}[/itex] is not a function of theta. So the nonlinear term in the material derivative vanishes. But where does the last term [itex]-\frac{u_{theta}}{r^2} [/itex]

come from? And the entire first equation?!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Fluid Mechanics - Equations of motion circular flows

**Physics Forums | Science Articles, Homework Help, Discussion**