(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Question Attached

2. Relevant equations

3. The attempt at a solution

So here I'm attempting b), I know [tex]\nabla \times \vec F\[/tex] is the curl, which in this case is defined by the matrix

[tex] \left[ \begin {array}{ccc} x&y&z\\ \noalign{\medskip}{\frac {d}{{\it

dx}}}&{\frac {d}{{\it dy}}}&{\frac {d}{{\it dz}}}\\ \noalign{\medskip}

-z&-x&{y}^{2}\end {array} \right] [/tex]

which gives me the vector [tex]\nabla \times \vec F\ = 2*yi+j-k[/tex]

Since my given vector is a function of [tex]theta[/tex] and z, I apply the change of coordinates x=rcos(theta), y=rsin(theta), z=r which effectively changes the vector from

r(theta,z)=(sqrt(z)*cos(theta) , sqrt(z)/2*sin(theta) , z)

into

r(theta,r)=(sqrt(r)*cos(theta) , sqrt(r)/2*sin(theta) , r)

The equation of the integral being [tex]\int\int_S \nabla \times \vec F\cdot \hat n\, dS [/tex]

so the [tex] \hat n\[/tex] is given by [tex]\hat n = \vec R_\theta \times \vec R_r[/tex] for downward pointing normal.

Rtheta

[tex]\left[ \begin {array}{c} -\sqrt {r}\sin \left( \theta \right)

\\ \noalign{\medskip}1/2\,\sqrt {r}\cos \left( \theta \right)

\\ \noalign{\medskip}0\end {array} \right] [/tex]

Rr

[tex] \left[ \begin {array}{c} 1/2\,{\frac {\cos \left( \theta \right) }{

\sqrt {r}}}\\ \noalign{\medskip}1/4\,{\frac {\sin \left( \theta

\right) }{\sqrt {r}}}\\ \noalign{\medskip}1\end {array} \right] [/tex]

Thus taking the cross product and then yielding the normal

n=

[tex] \left[ \begin {array}{c} 1/2\,\sqrt {r}\cos \left( \theta \right)

\\ \noalign{\medskip}\sqrt {r}\sin \left( \theta \right)

\\ \noalign{\medskip}-1/4\end {array} \right] [/tex]

Then I substitute the cylindrical coordinates x=rcos(theta), y=rsin(theta), z=r into my vector F to get.

[tex] \left[ \begin {array}{c} 2\, \left( r \right) \sin \left( \theta

\right) \\ \noalign{\medskip}1\\ \noalign{\medskip}-1\end {array}

\right] [/tex]

Thus finally, yielding the integral for the flux as.

[tex]\int _{0}^{2\,\pi}\!\int _{0}^{h}\!{r}^{ 1.5}\sin \left( \theta

\right) \cos \left( \theta \right) +{r}^{ 0.5}\sin \left( \theta

\right) +1/4{dr}\,{d\theta}[/tex]

Just want to know if everything I've done so far is correct(most of it were wild/educated guesses), and the domain for z is confusing me with the h>0, when I'm evaluating the integral, what would I put as h?

Thank you.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Flux of curl

**Physics Forums | Science Articles, Homework Help, Discussion**