1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Flux through a surface

  1. Jun 18, 2006 #1
    Hi all,

    Let [itex]D[/itex] be the top half of a ball of radius [itex]a>0[/itex] and let

    [itex]\mathbf{f} = xz \mathbf{i} + y \mathbf{j} + x \mathbf{k}[/itex]

    Calculate the outward flux across S using the definition of the surface integral.

    [itex]\int_{S} \mathbf{f} \cdot \mathbf{n} dS = \int_{cap} \mathbf{f} \cdot \mathbf{n} dS + \int_{disc} \mathbf{f} \cdot \mathbf{n} dS[/itex]

    [itex]\frac{1}{a}\int_{cap} (xz,y,x) \cdot (x,y,z) d S[/itex]
    [itex]\frac{1}{a}\int_{cap} x^2z + y^2 + xz d S[/itex]
    [itex]\frac{1}{a}\int_{0}^{2\pi}\int_{0}^{\pi/2} (r^3\cos^2\varphi\sin^2\theta\cos\theta + r^2\sin^2\varphi\sin^2\theta + r^2\cos\varphi\sin\theta\cos\theta) (a^2 \sin\theta) d\theta d\varphi[/itex]
    [itex]a\int_{0}^{2\pi}\int_{0}^{\pi/2} (r^3\cos^2\varphi\sin^3\theta\cos\theta + r^2\sin^2\varphi\sin^3\theta + r^2\cos\varphi\sin^2\theta\cos\theta) d\theta d\varphi[/itex]

    [itex]a\int_{0}^{2\pi}\int_{0}^{\pi/2} (r^3\cos^2\varphi\sin^3\theta\cos\theta + r^2\cos\varphi\sin^2\theta\cos\theta) d\theta d\varphi[/itex]

    I assume that one would then evaluate the integral by parts. But is there an easier method?
    Last edited: Jun 18, 2006
  2. jcsd
  3. Jun 18, 2006 #2
    I figured it out using integration by substitution.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook