1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Forces in fluid or pressure

  1. Dec 13, 2013 #1
    why the forces in pressure always taken perpendicular?
    and if they are taken then to which direction?
    and what about presure on a curved plane?
     
  2. jcsd
  3. Dec 13, 2013 #2

    Mentz114

    User Avatar
    Gold Member

    If a ball bounces off a wall with a perfect elastic collision then the change of momentum of the ball is perpendicular to the wall at the point of collision. Thus the force exerted on the wall is perpendicular to the wall. In a simple mechanical model pressure is the force resulting from many such collisions by gas atoms or molecules with random angles of incidence.
     
  4. Jan 7, 2014 #3
    how does it explains us taking perpendicular direction as
     
  5. Jan 7, 2014 #4
    Are you familiar with the concept that pressure is an isotropic tensor?

    Chet
     
  6. Jan 7, 2014 #5
    nope could you explain?
     
  7. Jan 8, 2014 #6
    We usually start out by learning that pressure is force per unit area, and is a scalar. As we progress, we later learn that pressure is not a scalar, but actually a tensorial quantity, equal to the isotropic (not direction-dependent) part of the more general stress tensor. We sometimes use matrix notation to describe the components of a tensor. For any orthogonal coordinate system, the pressure portion of the stress tensor is represented by:
    [tex]\left(\begin {array}{ccc}p&0&0\\0&p&0\\0&0&p\end {array}\right)[/tex]
    We can obtain the pressure force per unit area acting on a surface oriented in an arbitrary direction in space by dotting the pressure tensor with a unit normal to the surface:
    [tex]\left(\begin {array}{ccc}p&0&0\\0&p&0\\0&0&p\end {array}\right)\left(\begin {array}{c}n_x\\n_y\\n_z\end{array}\right)=\left(\begin {array}{c}pn_x\\pn_y\\pn_z\end{array}\right)=p\left(\begin {array}{c}n_x\\n_y\\n_z\end{array}\right)[/tex]
    Note that, with this mathematical representation, the pressure force per unit area is automatically delivered as a vector with magnitude p and direction normal to the surface.

    Chet
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Forces in fluid or pressure
Loading...