- #1

- 51

- 0

I need to integrate the vector function [itex]\frac{1}{r^6}[\hat{r} \times ((\vec{P}\cdot \hat{r})\vec{M} - ((\vec{M} \cdot \hat{r})\vec{P})] [/itex] over the entire exterior of the sphere of radius R centered at the origin of coordinates. In other words, I need to compute:

[tex]

\int_{\phi = 0}^{2\pi} \int_{\theta = 0}^{\pi} \int_{r = R}^{\infty} \frac{1}{r^4}[\hat{r} \times ((\vec{P}\cdot \hat{r})\vec{M} - ((\vec{M} \cdot \hat{r})\vec{P})] sin\theta dr d\theta d \phi

[/tex]

I'm looking for a cute and clever way to do this, instead of the straightforward and tedious method. Any ideas or hints?