So say I do a fourier transform of a rectangular function with magnitude 1 from (0, NT). The fourier transform of this would be:(adsbygoogle = window.adsbygoogle || []).push({});

[itex]f(jΩ) = \frac{1-e^{-jΩNT}}{jΩ} = NT\cdot{e^{-jΩNT/2}}\cdot{sinc(ΩNT/2)}[/itex]

Now say if I sample this rectangle at time T producing N samples, the DTFT of this is:

[itex]f(e^{jw}) = \frac{1-e^{-jwN}}{1-e^{-jw}} = e^{-jw(N-1)/2}\cdot\frac{sin(wN/2)}{sin(w/2)}[/itex]

Since DTFT and Fourier Transform is related by Ω = wT where

[itex]f(e^{jw}) = \frac{1}{T}\sum{f(jΩ + j2\pin)}[/itex]

Now if I try this method I get to this point:

[itex]f(e^{jw}) = e^{-jw(N-1)/2}\cdot{sin(wN/2)}\cdot{\sum\frac{1}{w+2{\pi}n}}[/itex]

This is where I get stuck, because that last summation needs to somehow equal sin(w/2) or 1-e^{-jw}. The summation is from negative infinity to infinity.

Was wondering if there is some math trick that gives the result of that summation. Thanks.

**Physics Forums - The Fusion of Science and Community**

# Fourier of boxcar vs rectangular

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

Have something to add?

- Similar discussions for: Fourier of boxcar vs rectangular

Loading...

**Physics Forums - The Fusion of Science and Community**