1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Fourier Series to Fourier Integral

  1. Jun 16, 2012 #1
    1. Question

    [tex] Consider\ any\ periodic\ function\ f(x)\ of\ period\ 2L\ that\ can\ be\ represented\ by\ a\ Fourier\ series:\

    {f(x)= a_0 + \sum_{n=1}^\infty\ a_ncos\ w_nx + b_nsin\ w_nx}\ ,\ w_n= {n\pi x\over \ L } [/tex]



    [tex] How\ do\ I\ get\ this\ form\ :\ f(x)= \int_{0}^{\infty}\ [A(w)cos\ wx + B(w)sin\ wx ]\ dw\ ,\ A(w)= {1\over \pi}\int_{-\infty}^{\infty}\ f(v)cos\ wv\ dv\ , B(w) = {1\over \pi}\int_{-\infty}^{\infty}\ f(v)sin\ wv\ dv? [/tex]



    2. The attempt at a solution

    [tex] Denoting\ the\ variable\ of\ integration\ by\ v(why\ so?)\ i.e.\ f(x)= {1\over 2L}\int_{-L}^{L}\ {f(v)}\ dv + {1\over L}\sum_{n=1}^\infty\ [(cos\ w_nx) \int_{-L}^{L}\ {f(v)cos\ w_nv}\ dv + (sin\ w_nx) \int_{-L}^{L}\ {f(v)sin\ w_nv}\ dv][/tex]


    [tex] To\ convert\ to\ a\ Fourier\ integral,\ set\ \Delta w= w_{n+1} - w_n = {\pi\over \ L}\ ,it\ follows\ that\ f(x)= {1\over 2L}\int_{-L}^{L}\ {f(v)}\ dv + {1\over \pi}\sum_{n=1}^\infty\ [(cos\ w_nx) \Delta w\int_{-L}^{L}\ {f(v)cos\ w_nv}\ dv + (sin\ w_nx) \Delta w\int_{-L}^{L}\ {f(v)sin\ w_nv}\ dv] [/tex]
     
    Last edited: Jun 16, 2012
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted



Similar Discussions: Fourier Series to Fourier Integral
Loading...