1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Fourier Series?

  1. Sep 26, 2006 #1
    When a question asks Construct sine and cosine series for the function:
    f(t)=t, 0<t<pi.

    Should I assume the period of f(t) is pi? I think it must because the domain is discontinous at 0 and pi.
     
  2. jcsd
  3. Sep 26, 2006 #2

    StatusX

    User Avatar
    Homework Helper

    I think that's a safe assumption.
     
  4. Sep 26, 2006 #3
    I got a fourier series
    [tex]\frac{\pi}{2} - \sum_{n=1}^\infty \frac{1}{n}sin(2nt)[/tex]

    correct?
     
    Last edited: Sep 26, 2006
  5. Sep 26, 2006 #4

    StatusX

    User Avatar
    Homework Helper

    That's hard to say...
     
  6. Sep 26, 2006 #5
    Do you say this because the question was vague in that it could have been asking for an even and/or odd extension of the function, in which case my answer would be wrong because I assumed a period of [tex]\pi[/tex].
     
    Last edited: Sep 26, 2006
  7. Sep 26, 2006 #6

    StatusX

    User Avatar
    Homework Helper

    Sorry, my mistake (I didn't see you defined f(t) above). That looks right.
     
  8. Sep 26, 2006 #7
    What do you think of the point I made in post 5?
     
    Last edited: Sep 26, 2006
  9. Sep 26, 2006 #8

    StatusX

    User Avatar
    Homework Helper

    I think if they didn't say anything about an even or odd extension of the function, you can assume the period is pi. Do you have any reason to think they might have implied otherwise?
     
  10. Sep 26, 2006 #9
    In the answers section they quoted functions which were even and odd extentions. Sometimes the functions with period pi are the odd extenstion functions (although not this case) but the even functions never are. They should have mentioned about even and odd extensions in the question.
     
  11. Sep 27, 2006 #10

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    No, it was not necessary to say that, it was already implied. Cosine is an even function, sine is an odd function. Any "cosine series" is necessarily an even function, any "sine series" must be an odd function. The period is necessarily [itex]2\pi[/itex] with one interval from [itex][\pi, -
    \pi][/itex].
     
  12. Sep 27, 2006 #11
    The series I derived in post 3 has is a sin function but has only period [itex]\pi[/itex] and fits the domain in the question perfectly well but is not an odd extension of the function.
     
    Last edited: Sep 27, 2006
  13. Sep 27, 2006 #12

    StatusX

    User Avatar
    Homework Helper

    If they meant a sine series and a cosine series, ie, two different series, then they were looking for even/odd extensions of f(t). If they were looking for a single series involving both sine and cosine terms, then what you got is correct (remember pi/2=pi/2*cos(0) is a cosine term).
     
    Last edited: Sep 27, 2006
  14. Sep 27, 2006 #13
    Good point. That was also probably what HallsofIvy meant as well. I guess a single consine term does not count as a series so it had to be a cosine series which corresponds to the even extension and one sine series corresponding to the even extension.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Fourier Series?
  1. Fourier Series (Replies: 1)

  2. Fourier series (Replies: 10)

  3. Fourier Series (Replies: 1)

  4. Fourier Series (Replies: 6)

Loading...