- #1
- 479
- 4
How do work out the Fourier series of f(x) = |x| - [tex]\pi[/tex] on ([tex]\pi[/tex],[tex]\pi[/tex]].
What have you tried? Have you noticed that is an even function?How do work out the Fourier series of f(x) = |x| - [tex]\pi[/tex] on ([tex]\pi[/tex],[tex]\pi[/tex]].
Yes. And for the a_{n} you have even times even and you can use symmetry, which will help you with the absolute values. Again, look at "half range" expansions.I see. Since f(x) is an even function, when it goes to finding b_{n} you multiply an even function with sin which an odd function to get an odd function and the integral of an odd function is always zero