Fourier series

Homework Statement

is the author wrong ? i was told that the f(x) = 0.5(a_0) +Σ(a_n)cos (nπx / L ) ........ but , in the example(photo2) , the author ignore the L , which the author gave f(x) = 0.5(a_0) +Σ(a_n)cos (nπx ) +......

The Attempt at a Solution

P/ s : i have tried to make some correction beside the working , is it correct ?[/B]

Attachments

• 150.jpg
62.1 KB · Views: 341
• 153.jpg
18.8 KB · Views: 362
• 1540002.jpg
33.8 KB · Views: 315
• 1550002.jpg
17.9 KB · Views: 302
Last edited:

BvU
Homework Helper
Don't know what photo 2 is, but in 154002 the author carefully uses L = 2.
And in 1550002 L is ##\pi##

Don't know what photo 2 is, but in 154002 the author carefully uses L = 2.
And in 1550002 L is ##\pi##
So, the author is wrong, right? In155002, the L should be 2, right??

BvU
Homework Helper
If 150 says ##n\pi\x\over L## and 154 says ##n\pi\over 2##, doesn't that mean the author did take L = 2 ?

As for 155, I'm not so sure: does the definition in your book agree with

The Fourier series of the function f(x) is given by
$$f(x)={a_0\over 2}+\sum_{n=1}^\infty \{a_n\cos nx+b_n\sin nx\}$$
where the Fourier coefficients ##a_0##, ##a_n##, and ##b_n## are defined by the integrals$$a_0={1\over \pi} \int _{−\pi}^\pi f(x)\, dx,\quad a_n={1\over \pi} \int _{−\pi}^\pi f(x)\cos nx\,dx,\quad b_n{1\over \pi} \int _{−\pi}^\pi f(x)\sin nx\,dx$$

If 150 says ##n\pi\x\over L## and 154 says ##n\pi\over 2##, doesn't that mean the author did take L = 2 ?

As for 155, I'm not so sure: does the definition in your book agree with

The Fourier series of the function f(x) is given by
$$f(x)={a_0\over 2}+\sum_{n=1}^\infty \{a_n\cos nx+b_n\sin nx\}$$
where the Fourier coefficients ##a_0##, ##a_n##, and ##b_n## are defined by the integrals$$a_0={1\over \pi} \int _{−\pi}^\pi f(x)\, dx,\quad a_n={1\over \pi} \int _{−\pi}^\pi f(x)\cos nx\,dx,\quad b_n{1\over \pi} \int _{−\pi}^\pi f(x)\sin nx\,dx$$
no , as you can see it 150 , the author gave $$f(x)={a_0\over 2}+\sum_{n=1}^\infty \{a_n\cos nπx / L+b_n\sin nπx\/L}$$

Attachments

• 150.jpg
66.5 KB · Views: 326