1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Fourier transform

  1. Sep 16, 2008 #1
    A vector function can be decomposed to form a curl free and divergence
    free parts:



    [tex]\vec{f_{\parallel}}(\vec{r'}) = - \vec{\nabla} \left( \frac{1}{4
    \pi} \int d^3 r' \frac{\vec{\nabla'} \cdot
    \vec{f}(\vec{r'})}{|\vec{r}-\vec{r'}|} \right)[/tex]


    [tex]\vec{f_{\perp}}(\vec{r'}) = \vec{\nabla} \times \left( \frac{1}{4
    \pi} \int d^3 r' \frac{\vec{\nabla'} \times

    I am trying to take the Fourier transform of
    [itex]\vec{f_{\parallel}}(\vec{r'})[/itex] and

    I am starting at [itex]\vec{f_{\parallel}}(\vec{r'})[/itex]. We know
    that the fourier transform is given by:

    [tex] \vec{f}(\vec{k}) = \int_{-\infty}^{\infty} d^3r e^{- i \vec{k}
    \cdot \vec{r}} \vec{f}(\vec{r}) [/tex]

    [tex] \vec{f}(\vec{r}) = \frac{1}{(2 \pi)^3} \int_{-\infty}^{\infty}
    d^3k e^{- i \vec{k} \cdot \vec{r}} \vec{f}(\vec{k}) [/tex]

    I'm not exactly sure where to begin. If I just plug and chug , we'd have:

    [tex] \vec{f}(\vec{k}) = \int_{-\infty}^{\infty} d^3r e^{- i \vec{k}
    \cdot \vec{r}} \vec{f}(\vec{r}) [/tex]

    [tex] \vec{f}(\vec{k}) = \int_{-\infty}^{\infty} e^{- i \vec{k} \cdot
    \vec{r}} - \vec{\nabla} \left( \frac{1}{4 \pi} \int
    \frac{\vec{\nabla'} \cdot \vec{f}(\vec{r'})}{|\vec{r}-\vec{r'}|} d^3
    r' \right) d^3r [/tex]

    I just do not see a simple way of tacking this problem. Any thoughts
    would be appreciated.
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you help with the solution or looking for help too?