1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Fourier Transform

  1. Jan 21, 2009 #1
    1. The problem statement, all variables and given/known data
    [tex]
    \begin{subequations}
    \begin{eqnarray}
    \dot{\hat{{\cal E}}}(t) &=& -\kappa \hat{{\cal E}}(t) + i g\int_{-\infty}^{\infty} d \Delta\; {\cal \rho}(\Delta)\, \Bigg\{
    e^{-(\gamma + i\Delta)(t-t_{0})}\hat{\sigma}_{ge}(t_{0},\Delta)+ ig\int_{t_{0}}^{t} d t' \hat{{\cal E}}(t')e^{-(\gamma + i\Delta)(t-t')} \Bigg\}
    \nonumber\\
    & & + \sqrt{2\kappa}\, \hat{{\cal E}}_{in},
    \\
    &=& -\kappa \hat{{\cal E}}(t) + i g\int_{-\infty}^{\infty} d \Delta\; {\cal \rho}(\Delta)\, \hat{\sigma}_{ge,0}(t_{0},\Delta)e^{-(\gamma +i\Delta)(t-t_{0})}
    \nonumber\\
    & & -g^{2} \int_{-\infty}^{\infty} d \Delta\; {\cal \rho}(\Delta)\, \int_{t_{0}}^{t} d t' \hat{{\cal E}}(t')e^{-(\gamma + i\Delta)(t-t')} + \sqrt{2\kappa}\, \hat{{\cal E}}_{in},
    \\
    \nonumber
    \end{eqnarray}
    \end{subequations}
    [/tex]

    I need to find the Fourier Transform of these integrals.
    2. Relevant equations


    When looking at this expression, the integrals on the right are evaluated first then proceed to the left.
    3. The attempt at a solution
    [tex]
    After applying the Fourier transform to the integral, we obtain:
    \begin{subequations}
    \begin{eqnarray}
    i\omega \tilde{\hat{{\cal E}}}(\omega)
    &=& -\kappa \tilde{\hat{{\cal E}}}(\omega) + i g\int_{-\infty}^{\infty} d \Delta\; {\cal \rho}(\Delta) \int_{-\infty}^{\infty} dt e^{-i\omega t} \hat{\sigma}_{ge,0}(t_{0},\Delta)e^{-(\gamma +i\Delta)(t-t_{0})}
    \nonumber\\
    & & -\frac{g^{2}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} d \Delta\; {\cal \rho}(\Delta) \int_{-\infty}^{\infty} dt e^{-i\omega t} \int_{t_{0}}^{t} d t' \hat{{\cal E}}(t')e^{-(\gamma + i\Delta)(t-t')}
    \nonumber\\
    & & + \sqrt{2\kappa}\, \tilde{\hat{{\cal E}}}_{in}(\omega),
    \\
    \nonumber
    &=& -\kappa \tilde{\hat{{\cal E}}}(\omega) + i g\int_{-\infty}^{\infty} d \Delta\; {\cal \rho}(\Delta) \int_{-\infty}^{\infty} dt e^{-i\omega t} \hat{\sigma}_{ge,0}(t_{0},\Delta)e^{-(\gamma +i\Delta)(t-t_{0})}
    \nonumber\\
    & & -\frac{g^{2}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} d \Delta\; {\cal \rho}(\Delta) \int_{-\infty}^{\infty} dt e^{-i\omega t} \int_{t_{0}}^{t} d t' \hat{{\cal E}}(t')e^{-(\gamma + i\Delta)(t-t')}
    \nonumber\\
    & & + \sqrt{2\kappa}\, \tilde{\hat{{\cal E}}}_{in}(\omega),
    \\
    \nonumber
    \end{eqnarray}
    \end{subequations}
    [/tex]
     
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted