Hi to everybody(adsbygoogle = window.adsbygoogle || []).push({});

I have to solve this fourier integral:

1) f(q)=\int_{-infty}^{+infty}a*b*x^(b-1)*exp(-a*x^b)*exp(i*q*x)*dx

and if S_n=x_1+...+x_n, with S_n the sum of n random variables IID, then I can write:

f_n(q)=[f(q)]^n,(convolution theorem), then the anti-trasform of f_n(q) give the pdf of the variable S_n.

2) F(S_n)=(1/2*pi)*\int_{-infty}^{+infty}f_n(q)*exp(-i*q*x)*dq.

I must to solve the equations 1) and 2) in order to solve my problem, the equation 2) is the final solution of the problem.

Thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Fourier trasform

Can you offer guidance or do you also need help?

**Physics Forums | Science Articles, Homework Help, Discussion**