Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

'Fractional Calculus I' !

  1. Aug 15, 2005 #1

    I have located a paper claiming that it is possible to fractionally differentiate, called 'Fractional Calculus I'

    Orion1 derivative integer factorial theorem:
    [tex]\frac{d^n}{dx^n} (x^n) = n![/tex]

    Is this paper correct? is 'Fractional Calculus' really possible?
    http://nrich.maths.org/public/viewer.php?obj_id=1365&refpage=monthindex.php&part=index&nomenu=1

    Fractional Integration?

    Reference:
    https://www.physicsforums.com/showpost.php?p=672326&postcount=1
     
    Last edited: Aug 15, 2005
  2. jcsd
  3. Aug 15, 2005 #2

    Hurkyl

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Yep! It's not nearly as nice as ordinary calculus, but you can still do it, and can apparently do cool stuff with it.
     
  4. Aug 15, 2005 #3

    lurflurf

    User Avatar
    Homework Helper

    Fractional (and real and complex) order operators are possible and are used. Unfortunately several results that one might expect do not hold. For example
    (D^n)exp(a x)=(a^n)exp(a x)
    and
    (D^n)cos(a x)=(a^n)cos(a x+n pi/2)
    do not hold in fractional calculus.
     
  5. May 26, 2009 #4
    Yes fractional calculus is really useful tool for modeling problems in physics, biology and engineering. Actually fractional difference calculus is possible also.
     
  6. May 26, 2009 #5

    djeitnstine

    User Avatar
    Gold Member

    How does one perform a fractional derivative on a transcendental function? Although it seems quite trivial on algebraic functions.
     
  7. May 26, 2009 #6

    nicksauce

    User Avatar
    Science Advisor
    Homework Helper

    The first time the idea of fractional calculus occurred to me, not knowing it was a real thing, was when I was thinking about how to calculate, in quantum mechanics, something like [itex]<\psi |\hat{p}^n |\psi>[/itex] where [itex]\hat{p}=-i\hbar \frac{d}{dx}[/itex]. I was indeed quite surprised to find that fractional calculus was a real thing.
     
  8. May 26, 2009 #7
    I always wondered what would happen if you substituted values other than integers (and replacing factorials with gamma functions) in cauchy's differentiation formula. Would this give the fractional derivative in the sense you guys are talking about?
     
  9. May 26, 2009 #8

    djeitnstine

    User Avatar
    Gold Member

    That's exactly it sir
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: 'Fractional Calculus I' !
  1. Fractional Calculus (Replies: 5)

Loading...