- #1
- 21
- 1
Calculation of Real ##x## in ##\{x\} = \{x^2\} = \{x^3\}##, Where ##\{x\} = ## fractional part of ##x##
My Try:: We Know that ##\{x\} ## and ##\{x^2\}## and ##\{x^3\}## are are ##\in \left[0,1\right)##
So Let we take ##\{x\} = \{x^2\} = \{x^3\} = k##, where ##k\in \left[0,1\right)##
So If ##\{x\} = k## , Then ##x-\lfloor x \rfloor = k\Rightarrow x = \lfloor x \rfloor +k##
where ##\lfloor x \rfloor = ## floor function of ##x##
Similarly If ##\{x^2\} = k## , Then ##x^2-\lfloor x^2 \rfloor = k\Rightarrow x^2 = \lfloor x^2 \rfloor +k##
Sililarly If ##\{x^3\} = k## , Then ##x^3-\lfloor x \rfloor = k\Rightarrow x^3 = \lfloor x^3 \rfloor +k##
Now How Can I proceed after that,
plz Help me
Thanks
My Try:: We Know that ##\{x\} ## and ##\{x^2\}## and ##\{x^3\}## are are ##\in \left[0,1\right)##
So Let we take ##\{x\} = \{x^2\} = \{x^3\} = k##, where ##k\in \left[0,1\right)##
So If ##\{x\} = k## , Then ##x-\lfloor x \rfloor = k\Rightarrow x = \lfloor x \rfloor +k##
where ##\lfloor x \rfloor = ## floor function of ##x##
Similarly If ##\{x^2\} = k## , Then ##x^2-\lfloor x^2 \rfloor = k\Rightarrow x^2 = \lfloor x^2 \rfloor +k##
Sililarly If ##\{x^3\} = k## , Then ##x^3-\lfloor x \rfloor = k\Rightarrow x^3 = \lfloor x^3 \rfloor +k##
Now How Can I proceed after that,
plz Help me
Thanks