I am reading One-dimensional examples from Bransden and Joachain.For the free particle solutions:Ψ=A exp [i(kx-ωt)] +B exp [–i(kx+ωt)](adsbygoogle = window.adsbygoogle || []).push({});

they say that for |A|=|B|,the probability current density=0.This is OK.Then they say we can associate the standing wave with a free particle along the x axis with a momentum whose magnitude is p=ћk but the direction is unknown...

My problem is I cannot understand what they say regarding momentum.If j=0,how can momentum be non-zero?

In fact, if A=0 or, B=0 I can see there is a momentum of precise value p=ћk.There j is non-zero and j=vP where P is the probability...

Also, in the very next example of a potential step they show j=0 everywhere and concludes that no net momentum in the state...

I tried to solve the problem by thinking that in the latter case, j=0 for the entire state.So, by conservation of momentum, p=0 everywhere...

But in the former case, j is not zero everywhere.So, p must conserve its non-zero value...!!!Or, may be that They meant momentum direction is unknown as there is no net momentum in free particle if |A|=|B|?

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Free Particle Understanding

Loading...

Similar Threads for Free Particle Understanding |
---|

A Particle in a 2d "corridor" |

I What does this equation for a free particle mean? |

I Is the Dirac free equation actually free |

A Generalized free fields as dark matter? |

I Questions Regarding Free Particles - Griffith's QM (I) |

**Physics Forums | Science Articles, Homework Help, Discussion**