A small cube of mass m is placed on the inside of a funnel rotating about a vertical axis at a constant rate of w revolutions per second. The wall of the funnel makes an angle theta with the horizontal. The coefficient of static friction between cube and funnel is u and the center of the cube is at a distance r from the axis of rotation. Find the (a) largest and (b) smallest values of w for which the cube will not move with respect to the funnel.(adsbygoogle = window.adsbygoogle || []).push({});

I of course try to draw a free body diagram that looks pretty weird.

does w_min look like sqrt(g(sin(theta)-ucos(theta))/r(cos(theta)+usin(theta)))? And wmax the same except for the fact that you add ucos)theta_ on the top except for subtracting.

The problem is also Halliday volume 1 chapter 5 problem 18

Thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Friction + centripetal acceleration problem

**Physics Forums | Science Articles, Homework Help, Discussion**