- 2
- 0
The problem starts with two masses, m=16kg and M=88kg. m is pushed against the middle of M with a static friction coefficient of .38, and M is on a frictionless floor. The first part of question asked to find the force necessary to prevent m from falling. After drawing the free body diagram it is determined that N=mg/static friction coefficient. Thus, to prevent the block m from falling there needs to be a normal force of 413 newtons on block m. The next question asks how much force is needed on block M, on the other side that block m is on, to prevent m from falling down block M. So, instead of applying the force to m to keep it up, the force will be applied to the larger block M to keep the smaller block on the other side from falling.
I cannot figure out where to start my calculations?
I cannot figure out where to start my calculations?