- #1

- 188

- 1

[tex] \int_{0}^{\infty} dt \frac{ f(at)-f(bt)}{g(t)}= (G(b)-G(a))(f(0)-f(\infty)) [/tex]

and [tex] \int dt g(t) [/tex]

- Thread starter mhill
- Start date

- #1

- 188

- 1

[tex] \int_{0}^{\infty} dt \frac{ f(at)-f(bt)}{g(t)}= (G(b)-G(a))(f(0)-f(\infty)) [/tex]

and [tex] \int dt g(t) [/tex]

- #2

HallsofIvy

Science Advisor

Homework Helper

- 41,833

- 961

Did you mean to say

[tex]G(t)= \int dt g(t) [/tex]

in your last line?

[tex]G(t)= \int dt g(t) [/tex]

in your last line?

- #3

- 188

- 1

- #4

HallsofIvy

Science Advisor

Homework Helper

- 41,833

- 961

[tex]\frac{f(b)- f(a)}{g(b)- g(a)}= \frac{f'(c)}{g'(c)}[/tex]

That looks like an integral version to me.

- Last Post

- Replies
- 2

- Views
- 1K

- Last Post

- Replies
- 1

- Views
- 3K

- Replies
- 2

- Views
- 2K

- Last Post

- Replies
- 9

- Views
- 2K

- Replies
- 4

- Views
- 2K

- Last Post

- Replies
- 6

- Views
- 2K

- Replies
- 5

- Views
- 5K

- Replies
- 5

- Views
- 2K

- Replies
- 5

- Views
- 6K

- Replies
- 2

- Views
- 1K