I've been unable to fully solve this: [itex]\frac{dy}{dx} + y = xy^4[/itex](adsbygoogle = window.adsbygoogle || []).push({});

The U: [itex]u = y^{-3}[/itex], so [itex]y = u^\frac{-1}{3}[/itex], and [itex]\frac{dy}{dx} = \frac{-1}{3}u^\frac{-4}{3}\frac{du}{dx} [/itex]

The substitution: [itex]\frac{-1}{3}u^\frac{-4}{3}\frac{du}{dx} + u^\frac{-1}{3} = xu^\frac{-4}{3}[/itex]

Simplified: [itex]\frac{du}{dx} - 3u = -3x[/itex]

AKA: [itex]\frac{du}{dx} + 3x = 3u[/itex]

I've tried solving the resulting equation as a linear:

[itex]p(x) = 3x[/itex], so the integrating factor is [itex]e^{\frac{3}{2}x^2}[/itex].

Which creates this unworkable equation: [itex]e^{\frac{3}{2}x^2}\frac{du}{dx} + 3xe^{\frac{3}{2}x^2} = 3ue^{\frac{3}{2}x^2}[/itex]

And I've tried solving it as a homogenous ([itex]3udx - 3xdx - du = 0[/itex]):

[itex]u = vx[/itex], so [itex]du = vdx + xdv[/itex]

Subing those in creates this unworkable mess: [itex]3vxdx - 3xdx - vdx - xdv = 0[/itex]

Which leaves me stuck, because I've only learned to solve separable, exact, homogenous, linear and bernoullis.

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Frustrating Bernoulli Equation

Loading...

Similar Threads - Frustrating Bernoulli Equation | Date |
---|---|

A Runge Kutta finite difference of differential equations | Yesterday at 6:31 PM |

What kind of ODE is this? | Jul 15, 2016 |

Solving a Bernoulli differential equation | Apr 25, 2013 |

Global solution to inhomogeneous Bernoulli ODE | Feb 2, 2013 |

Physical Applications of the Bernoulli Diff Eq | Jan 4, 2013 |

**Physics Forums - The Fusion of Science and Community**