• Support PF! Buy your school textbooks, materials and every day products Here!

Frustrum of a pyramid

  • Thread starter Lamoid
  • Start date
44
0
Find the volume of frustum of a pyramid with square base of side b, square top of side a, and height h.



Usually when I do these volume problems, I treat them as an equation rotating around an axis, but this object has flat sides so I don't know how to begin.

http://upload.wikimedia.org/wikipedia/en/f/f8/Pyramid_frustum_for_Moscow_papyrus_14.jpg [Broken]

The solid looks like that.

I know I need to make an integral from 0 to h of the area of the square but while I usually replace the radius in the formula with an equation, I cannot do so here.

Thanks in advance.
 
Last edited by a moderator:

Answers and Replies

1,356
0
I know I need to make an integral from 0 to h of the area of the square but while I usually replace the radius in the formula with an equation, I cannot do so here.
Yes you can: Let s(y) be the length of the side of the square at height y. You know that s(0) = b and s(h) = a. You also know that s(y) has to a linear function of y. (Why?) Use these facts to find s(y).
 
44
0
So S(y) is (a - b)x / h ?
 
Last edited:
1,356
0
I think you meant (a - b)y / h. You know this is not it because when y = h, it yields a - b. You want it to yield just a.
 
44
0
Oh whoop, I should have seen my linear equation needed a "+ b" on the end based on the 0,b point. So the equation should look like s(y) = (a-b)y/h + b ?
 
1,356
0
You got it.
 

Related Threads for: Frustrum of a pyramid

  • Last Post
Replies
3
Views
13K
  • Last Post
Replies
2
Views
3K
  • Last Post
Replies
14
Views
3K
  • Last Post
Replies
5
Views
9K
  • Last Post
Replies
16
Views
5K
  • Last Post
Replies
4
Views
3K
Replies
7
Views
7K
  • Last Post
Replies
2
Views
5K
Top