- #1

MathematicalPhysicist

Gold Member

- 4,162

- 160

## Main Question or Discussion Point

Assume I have the next function f(x)=x^3-c-bx-ax^2 and I am asked to find the coefficients a,b,c which minimizes the norm of f under L_2[-1,1].

All I need to do here is equate [tex]f=\sum_k <f,\phi_k>\phi_k[/tex] where the phis are orthonormal functions, in this case simply 1,x,x^2,x^3, I am not sure this correct cause I found the next coefficients:

<f,1>=sqrt(-2a-2c/3)

<f,x>=sqrt(2/5-2/3 b)

<f,x^2>=sqrt(-2a/3-2c/5)

<f,x^3>=sqrt(2/7-2b/5)

But when equation I find two different solutions to b, so I suspect this is the wrong to solve this problem, any hints as to how to minimize this functional.

All I need to do here is equate [tex]f=\sum_k <f,\phi_k>\phi_k[/tex] where the phis are orthonormal functions, in this case simply 1,x,x^2,x^3, I am not sure this correct cause I found the next coefficients:

<f,1>=sqrt(-2a-2c/3)

<f,x>=sqrt(2/5-2/3 b)

<f,x^2>=sqrt(-2a/3-2c/5)

<f,x^3>=sqrt(2/7-2b/5)

But when equation I find two different solutions to b, so I suspect this is the wrong to solve this problem, any hints as to how to minimize this functional.